
Homework #9. Due Thursday, November 3rd, in class

Reading:

1. For this homework assignment: § 7.1.

2. For next week’s classes: read § 7.2 and the end of § 7.1, go over § 7.3.

HOMEWORK POLICY: In this homework all quiz problems may be

discussed with others (following the previously stated rules for QD problems).

Problem 1: Q Prove part (b)(ii) of Theorem 17.3, left in class as an exercise

(its statement is recalled below). Let V be a finite-dimensional vector space,

T ∈ L(V ), and assume that χT (x) splits. Fix λ ∈ Spec(T ), and let Kλ =

∪∞n=0Ker((T −λI)n) be the corresponding generalized eigenspace. As proved

in Theorem 17.3(a), there exists a T -invariant subspace Mλ of V s.t.

V = Kλ ⊕Mλ.

Let R = T|Kλ ∈ L(Kλ) and S = T|Mλ
∈ L(Mλ). Prove that χS(x) is not

divisible by x− λ (equivalently that λ 6∈ Spec(S)). Hint: Use the fact that

the sum Kλ +Mλ is direct.

Problem 2: Q This problem strengthens the statement of Problem 2(b)

in HW#7. Let V be a finite-dimensional vector space, let T ∈ L(V ) and

n = dim(V ).

(a) Let i ∈ N be s.t. Ker(T i+1) = Ker(T i). Prove that Ker(Tm) = Ker(T i)

for all m > i. Hint: It is enough to show that Ker(T i+2) = Ker(T i+1).

(b) Prove that ∪∞i=0Ker(T i) = Ker(T n).

(c) Deduce from (b) that for any λ ∈ Spec(T ) the generalized eigenspace

Kλ = Ker((T − λI)n).

Problem 3: Let A ∈Matn×n(F ).

(a) Suppose that A is in JCF. As usual, for each λ ∈ Spec(A), denote by

mλ the multiplicity of λ with respect to A. Prove that mλ is equal to

the sum of sizes of all Jordan blocks of A corresponding to λ. Note:

This result follows from the proof of existence of JCF, but it can be

easily obtained by direct computation.
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(b) Q Suppose that F = R and χA(x) = (x− 4)(x− 5)2(x− 6)3. Write down

all possible Jordan canonical forms of A, up to equivalence (two Jordan

canonical forms are called equivalent if they can be obtained from each

other by permutation of blocks).

Problem 4: The goal of this problem is to deduce Cayley-Hamilton theorem

from the existence of Jordan Canonical Form (JCF). Note that in our text-

book Cayley-Hamilton theorem is used in the proof of the existence of JCF,

but the proof of the existence of JCF given in class (which will be completed

on Tuesday, Nov 1st) is independent of the Cayley-Hamilton theorem.

(a) Prove the following formula for multiplying 2×2 block matrices (where

diagonal blocks are square matrices). Let A1, A2 ∈Matn×n(F ) be 2×2

block matrices:

A1 =

(
B1 C1

D1 E1

)
and A2 =

(
B2 C2

D2 E2

)
.

Assume that B1 and B2 have the same size (hence so do E1 and E2),

that is, B1, B2 ∈ Matk×k(F ) for some 0 < k < n (and hence E1, E2 ∈
Matk×k(F )). Prove that

A1A2 =

(
B1B2 + C1D2 B1C2 + C1E2

D1B2 + E1D2 D1C2 + E1E2

)
.

Note: I do not of any proof except direct computation, which is

straightforward, but may require rather cumbersome notations.

(b) Use induction to generalize (a) to the case of n× n block matrices.

(c) Q Prove Cayley-Hamilton theorem for matrices: Let A ∈ Matn×n(F ).

Then the characteristic polynomial χA(x) vanishes atA, that is, χA(A) =

0. Hint: First use the formula from (b) and Problem 3(a) to prove

the theorem when A is in JCF. Then deduce the theorem for a general

A (using existence of JCF for matrices). Note that we do not assume

that χA(x) splits, but this does not cause any problems. Why?

(d) Deduce Cayley-Hamilton theorem for linear transformations: if V is a

finite-dimensional vector space and T ∈ L(V ), then χT (T ) = 0.

Problem 5: Read (and understand) the subsection on “Invariant Subspaces

and Direct Sums” (in § 5.4, pp. 318–321).

Problem 6: Let V be a finite-dimensional vector space and T ∈ L(V ) a

nilpotent linear map. In Lecture 18 we
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(a) proved that V has a Jordan basis β for T (that is, a basis s.t. [T ]β is

in JCF) and

(b) observed that an ordered basis β of V is a Jordan basis ⇐⇒ β is an

(ordered) union of nilpotent T -cycles.

The goal of this problem is to justify two very explicit algorithms for con-

structing a Jordan basis β in the case dim(V ) = 3.

So, below we assume that dim(V ) = 3, T ∈ L(V ) is nilpotent and β is a

Jordan basis for T . By a cycle we mean a nilpotent T -cycle.

(a) Prove that

(i) If rk(T ) = 0 (that is, T = 0), β consists of 3 cycles of length 1

and so [T ]β =

0 0 0
0 0 0
0 0 0


(ii) If rk(T ) = 1, β consists of a cycle of length 2 and a cycle of length

1 and so [T ]β =

0 1 0
0 0 0
0 0 0

 (assuming β is ordered so that length

2 cycle appears before length 1 cycle).

(iii) If rk(T ) = 2, β consists of a single cycle of length 3 and so [T ]β =0 1 0
0 0 1
0 1 0

.

(iv) rk(T ) cannot equal 3.

(b) Q Prove that T 2 6= 0 if and only if rk(T ) = 2.

(c) Note that if rk(T ) = 0, any basis β of V is a Jordan basis. Justify the

following algorithm for finding β, that is, prove that this algorithm will

always produce a Jordan basis, regardless of the choices made. (Note:

this algorithm essentially follows from the proof of Theorem 18.4 in

class)

(i) Assume that rk(T ) = 1. Take any nonzero v ∈ Im(T ) and find

y ∈ T s.t. T (y) = v. Then v ∈ Ker(T ) (since T 2 = 0 by (b))

and dim(Ker(T )) = 3 − rk(T ) = 2, so we can find z ∈ Ker(T )

s.t. {v, z} is a basis for Ker(T ). Then {v, y, z} (in this order) is a

Jordan basis.

(ii) Assume that rk(T ) = 2. Take any nonzero v ∈ Im(T 2) (this is

possible by (b)), then find y1 ∈ V s.t. T (y1) = v and then y2 ∈ V
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s.t. T (y2) = y1 (such y1 and y2 exist since v ∈ Im(T 2)). Then

{v, y1, y2} is a Jordan basis.

(d) Now justify a slightly different algorithm for finding a Jordan basis for

T .

(i) Assume that rk(T ) = 1. Take any v 6∈ Ker(T ) and let w = T (v).

Then w ∈ Ker(T ) since T 2 = 0 by (b). Take any z ∈ Ker(T ) s.t.

{w, z} is a basis for Ker(T ). Then {w, v, z} is a Jordan basis.

(ii) Assume that rk(T ) = 2. Since T 2 6= 0 by (b), we can find v 6∈
Ker(T 2). Then {T 2(v), T (v), v} is a Jordan basis.

(e) State the versions of (a)-(d) for the analogous problem with dim(V ) =

2.

(f) Q For each of the following matrices A ∈ Mat3×3(R) prove that T = LA
is nilpotent and find JCF (T ) and a Jordan basis for T (you may use

the algorithm from (c) or (d) or any other algorithm, but in the latter

case it needs to be justified).

(i) A =

2 0 −1
0 −2 1
2 −2 0

 and (ii) A =

 2 −2 6
−1 1 −3
−1 1 −3


Problem 7 Q: Find the Jordan canonical form and a Jordan basis for the

matrix

A =


2 1 0 0
0 2 1 0
0 0 3 0
0 1 0 3

 .

(This is the same as finding JCF and Jordan basis for T = LA). The general

algorithm for computing JCF if given below:

Let V be a finite-dimensional vector space over a field F and let T ∈ L(V ).

We assume that χT (x) splits over F .

Step 1: Compute the eigenvalues of T , call them λ1, . . . , λs.

Step 2: For each λ ∈ Spec(T ) compute the generalized eigenspace Kλ. This

can be done by consecutively computing Ker(T −λI), Ker(T −λI)2 etc. and

stopping at the first i s.t. dim Ker(T − λI)i = mλ(T ).

Step 3: For each λ ∈ Spec(T ) denote by Tλ the restriction of T to Kλ.

Find a Jordan basis for each Tλ, that is, find a basis βλ for Kλ s.t. [Tλ]βλ
is in JCF. This can be done essentially by the algorithm from the proof

of Theorem 18.4 or (in the case mλ ≤ 3) by variations of that algorithm
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described in Problem 6. Indeed, by definition ofKλ, the map Tλ−λI ∈ L(Kλ)

is nilpotent, so Theorem 18.4 provides an algorithm for finding a basis βλ
of Kλ s.t. [Tλ − λI]βλ is in JCF with all Jordan blocks having 0’s on the

diagonal. But [Tλ − λI]βλ = [Tλ]βλ + λ[I]βλ = [Tλ]βλ + λImλ , and by adding

the scalar matrix λImλ to a matrix in JCF with 0’s on the diagonal, we clearly

get a matrix in JCF with λ’s on the diagonal. Thus, βλ is a Jordan basis for

Tλ.

Note that to implement the above procedure in practice, say, if we use

one of the algorithms from Problem 6, one needs to compute rk((Tλ − λI)i)

and Ker((Tλ − λI)i) for various i ∈ N. All of this can be done without

computing the restriction map Tλ explicitly. Indeed, one can show (check

these !!!) that Ker((Tλ − λI)i) = Ker((T − λI)i) and thus rk((Tλ − λI)i) =

rk((T − λI)i)− dimV +mλ by rank-nullity.

Step 4: Now take the ordered union βλ1∪. . .∪βλs of the bases found in Step 3

for each λi ∈ Spec(T ). This union is a Jordan basis for T (this claim will be

justified at the beginning of Lecture 19). To determine JCF (T ), we go back

to Step 3. By construction, each βλ is a union of nilpotent (T − λI)-cycles.

Each nilpotent (T − λI)-cycle will yield a Jordan block corresponding to λ

in JCF (T ) with the size of the block equal to the length of the cycle.
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