Homework #8. Due Thursday, October 27th, in class Reading:

1. For this homework assignment: \S 5.2.

2. For next week's classes: read § 7.1, go over § 5.4.

HOMEWORK POLICY: In this homework all quiz problems may be discussed with others (following the previously stated rules for QD problems). **Problem 1: Q** Let V be a vector space over a field F. A linear map $T \in \mathcal{L}(V)$ is called **nilpotent** if $T^n = 0$ for some $n \in \mathbb{N}$. Prove that if T is nilpotent, then for any nonzero $\lambda \in F$, the map $T - \lambda I$ is invertible and

$$(T - \lambda I)^{-1} = -\lambda^{-1} \sum_{k=0}^{n-1} (\lambda^{-1}T)^k$$

Problem 2: Let V be a finite-dimensional vector space and W_1, W_2, \ldots, W_k subspaces of V.

- (a) Suppose that $V = W_1 + \ldots + W_k$. Prove that $\sum_{i=1}^k \dim W_i \ge \dim V$ and equality holds \iff the sum $W_1 + \ldots + W_k$ is direct.
- (b) **Q** Now suppose that the sum $W_1 + \ldots + W_k$ is direct. Prove that $\sum_{i=1}^k \dim W_i \le \dim V$ and equality holds $\iff V = W_1 + \ldots + W_k$.
- (c) **Q** Let $T \in \mathcal{L}(V)$ and $Spec(T) = \{\lambda_1, \dots, \lambda_k\}$. Use (b) and Theorems 16.3, 16.4 from class to prove that T is diagonalizable $\iff V = \bigoplus_{i=1}^k E_{\lambda_i}(T)$.

In parts (a) and (b) give a precise reference for any assertion dealing with direct sums (**Hint:** all relevant properties of direct sums can be easily deduced from Theorem 5.10 in the book).

Problem 3: Let V be a vector space and β a basis of V. Suppose that β_1, \ldots, β_k are subsets of β s.t. β is a disjoint union of β_1, \ldots, β_k (that is, $\beta = \beta_1 \cup \ldots \cup \beta_k$ and $\beta_i \cap \beta_j = \{0\}$ for $i \neq j$).

- (a) Prove that $V = \text{Span}(\beta_1) \oplus \ldots \oplus \text{Span}(\beta_k)$.
- (b) Deduce that if dim $V < \infty$ and $\beta = \{v_1, \ldots, v_k\}$, then $V = \text{Span}(v_1) \oplus \ldots \oplus \text{Span}(v_k)$.

Problem 4: Q Let V be a finite-dimensional vector space, $n = \dim V$, and let $T \in \mathcal{L}(V)$. Let $\lambda_1, \ldots, \lambda_n$ be the eigenvalues of T listed with multiplicities (that is, each $\lambda \in Spec(T)$ appears on the list $m_{\lambda}(T)$ times). Prove that

$$\sum_{i=1}^{n} \lambda_i = \operatorname{tr}(T) \quad \text{and} \quad \prod_{i=1}^{n} \lambda_i = \det(T). \quad (***)$$

Recall that by definition $\operatorname{tr}(T) = \operatorname{tr}([T]_{\beta})$ and $\operatorname{det}(T) = \operatorname{det}([T]_{\beta})$ where β is any basis of V. **Hint:** Relate all four expressions in (***) to the characteristic polynomial $\chi_T(x) = \operatorname{det}(T - xI)$.

Problem 5: Q In each of the following examples determine whether the matrix A is diagonalizable over \mathbb{R} . If A is diagonalizable, find an invertible matrix Q and a diagonal matrix D s.t. $Q^{-1}AQ = D$.

(a)
$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 3 \end{pmatrix}$$
 (b) $A = \begin{pmatrix} 7 & -4 & 0 \\ 8 & -5 & 0 \\ 6 & -6 & 3 \end{pmatrix}$

Problem 6: Q Let V be a finite-dimensional vector space and $T \in \mathcal{L}(V)$.

- (a) Let λ be an eigenvalue of T. Prove that any subspace of $E_{\lambda}(T)$ is T-invariant.
- (b) Prove that if U and W are T-invariant subspaces of V, then their sum U+W is also T-invariant. Generalize to the sum of any finite collection of subspaces.
- (c) Suppose that $Spec(T) = \{\lambda_1, \ldots, \lambda_k\}$. Let W be a subspace of V s.t.

$$W = \sum_{i=1}^{k} (W \cap E_{\lambda_i}(T))$$

(Note that this sum direct since $W \cap E_{\lambda_i}(T) \subseteq E_{\lambda_i}(T)$ and the sum $\sum_{i=1}^k E_{\lambda_i}(T)$ is direct). Use (a) and (b) to prove that W is T-invariant.

In parts (d) and (e) assume that T is diagonalizable.

- (d) Prove the converse of (c): If W is a T-invariant subspace of V, then $W = \sum_{i=1}^{k} (W \cap E_{\lambda_i}(T))$. **Hint:** Since T is diagonalizable, $V = \bigoplus_{i=1}^{k} E_{\lambda_i}(T)$ by Problem 2(c), so any $w \in W$ can be written as $w = v_1 + \ldots + v_k$ with $v_i \in E_{\lambda_i}(T)$. Use "Vandermonde argument" to prove that each $v_i \in W$.
- (e) Use (a), (b) and (d) to prove that every T-invariant subspace of W has a T-invariant complement.

Problem 7: Let $A \in Mat_{n \times n}(F)$ and A^t its transpose.

- (a) Prove that $Spec(A) = Spec(A^t)$ and $\dim E_{\lambda}(A) = \dim E_{\lambda}(A^t)$ for each $\lambda \in Spec(A)$.
- (b) Prove that A is diagonalizable $\iff A^t$ is diagonalizable using (a)
- (c) Now prove that A is diagonalizable $\iff A^t$ is diagonalizable directly from definition (without using (a)).

Problem 8: Given a field F, two matrices $A, B \in Mat_{n \times n}(F)$ are said to be simultaneously diagonalizable if there is an invertible matrix $Q \in Mat_{n \times n}(F)$ s.t. $Q^{-1}AQ$ and $Q^{-1}BQ$ are both diagonal. Given a finite-dimensional vector space V, two linear maps $T, S \in \mathcal{L}(V)$ are said to be simultaneously diagonalizable if there exists a basis β of V s.t. $[T]_{\beta}$ and $[S]_{\beta}$ are both diagonal.

- (a) Let $T, S \in \mathcal{L}(V)$ and γ a basis of V. Prove that T and S are simultaneously diagonalizable $\iff [T]_{\gamma}$ and $[S]_{\gamma}$ are simultaneously diagonalizable.
- (b) Prove that if $T, S \in \mathcal{L}(V)$ are simultaneously diagonalizable, then T and S commute with each other, that is, TS = ST. State and prove the analogous result about matrices.