Homework #7. Due Thursday, October 20th, in class Reading:

1. For this homework assignment: \S 5.1, parts of 5.2.

2. For next week's class: \S 5.1 and 5.2.

HOMEWORK POLICY: In this homework all quiz problems may be discussed with others (following the previously stated rules for QD problems). **Problem 1:** Let F be a field, n a positive integer, and let $A = (a_{ij}) \in Mat_{n \times n}(F)$.

- (a) Prove that A is invertible if and only if its columns form a basis of F^n .
- (b) Let V be a vector space over F with dim $V = n < \infty$, and let $\beta = \{v_1, \ldots, v_n\}$ be a basis of V. Define the vectors $v'_1, \ldots, v'_n \in V$ by $v'_j = \sum_{i=1}^n a_{ij}v_i$. Prove that $\{v'_1, \ldots, v'_n\}$ is a basis of V if and only if A is invertible. **Hint:** Use (a) and the fact that isomorphisms of vector spaces send bases to bases.
- (c) Deduce from (b) that for any invertible matrix $A \in Mat_{n \times n}(F)$ there is an ordered basis β' of V s.t. $A = [I]_{\beta'}^{\beta}$ (where $I : V \to V$ is the identity map).

Problem 2: Q Let V be a vector space and $T: V \to V$ a linear map. In parts (b)–(d) assume that dim $V < \infty$.

- (a) Prove that $\operatorname{Ker}(T^n) \subseteq \operatorname{Ker}(T^{n+1})$ for each $n \ge 1$.
- (b) By (a) we get an ascending chain of subspaces of V:

$$\operatorname{Ker}(T) \subseteq \operatorname{Ker}(T^2) \subseteq \dots$$

Prove that this chain stabilizes after finitely many steps, that is, there is $N \in \mathbb{N}$ s.t. $\operatorname{Ker}(T^n) = \operatorname{Ker}(T^N)$ for all $n \geq N$.

- (c) Assume that $\operatorname{Ker}(T) \cap \operatorname{Im}(T) \neq \{0\}$. Prove that $\operatorname{Ker}(T^2) \neq \operatorname{Ker}(T)$.
- (d) Use (b) and (c) to show that there exists $n \in \mathbb{N}$ s.t. $\operatorname{Ker}(T^n) \cap \operatorname{Im}(T^n) = \{0\}$, and therefore $V = \operatorname{Ker}(T^n) \oplus \operatorname{Im}(T^n)$ by Homework#3.

Problem 3: READ and UNDERSTAND the section on direct sums of several subspaces in § 5.2 (pp. 274-278). This material will be frequently used in the next few lectures.

Problem 4: Q Let V be a finite-dimensional vector space over a field F, $n = \dim(V)$ and $T: V \to V$ a linear map. Let $1 \le k \le n-1$. Prove that the following are equivalent:

- (i) $V = U \oplus W$ where dim U = k and both U and W are T-invariant
- (ii) There is an ordered basis β of V s.t.

$$[T]_{\beta} = \begin{pmatrix} B & 0\\ 0 & C \end{pmatrix}$$

for some $B \in Mat_{k \times k}(F)$ and $C \in Mat_{(n-k) \times (n-k)}(F)$.

Note: This problem is quite similar to Problem 3 on HW#4 (the solution for which is posted online).

Problem 5: Q

- (a) Prove that tr(AB) = tr(BA) for any $A, B \in Mat_{n \times n}(F)$ (recall that tr denotes the trace, the sum of diagonal entries).
- (b) Prove that if $A, C \in Mat_{n \times n}(F)$ are similar (that is, $C = Q^{-1}AQ$ for some invertible $Q \in Mat_{n \times n}(F)$), then tr(A) = tr(C).
- (c) Use (b) to define tr(T) for a linear transformation $T: V \to V$, where $\dim(V) < \infty$

Problem 6: Problem 3(a)(d) after § 5.1 (page 257).

Problem 7: Given a matrix $A = (a_{ij}) \in Mat_{n \times n}(F)$, its characteristic polynomial $\chi_A(t)$ is defined by $\chi_A(t) = \det(tI_n - A)$ (note that in the book the characteristic polynomial is defined as $\det(A - tI_n)$ which is the same thing up to the factor of $(-1)^n$).

- (a) Prove that $\chi_A(t)$ is a monic polynomial of degree n in t ('monic' means that the leading coefficient is equal to 1), so that $\chi_A(t) = t^n + a_{n-1}t^{n-1} + \dots + a_0$ for some $a_0, \dots, a_{n-1} \in F$. Moreover, show that $\chi_A(t) = (t - a_{11}) \dots (t - a_{nn}) + p(t)$ where deg $(p(t)) \leq n - 2$.
- (b)**Q** Prove that in the notations of part (a), $a_{n-1} = -tr(A)$ and $a_0 = (-1)^n \det(A)$.

Problem 8: Q Let V be a finite-dimensional vector space over a field F and $T: V \to V$ a linear map. Let g(x) be a polynomial with coefficients in F. Note that since the set of linear maps from V to V is closed under addition, multiplication and also multiplication by scalars from F, there is a well-defined linear map $g(T): V \to V$ (e.g. if $g(x) = x^2 + 2x + 3$, then $g(T) = T^2 + 2T + 3I$ where I is the identity map). Suppose that λ is an eigenvalue of T and $v \in V$ is an eigenvector of T corresponding λ . Prove that v is also an eigenvector of g(T) corresponding to $g(\lambda)$ (so in particular, $g(\lambda)$ is an eigenvalue of g(T)).

Problem 9 (bonus): Let $A, B \in Mat_{n \times n}(F)$ be s.t. the matrix $I_n + AB$ is invertible. Prove that $I_n + BA$ is also invertible. **Hint:** Use the fact that $C \in Mat_{n \times n}(F)$ is non-invertible \iff the equation Cu = 0 has a non-trivial solution $u \in F^n$.