
Homework #6. Solutions to selected problems.

Problem 2: In parts (a) and (b) let U, V,W be finite-dimensional vector

spaces and T : U → V and S : V → W linear maps.

(a) Prove that

null(ST ) ≤ null(S) + null(T )

(recall that null(R) = dim(Ker(R)) for a linear map R). Hint: You can

nicely apply the result of one of the problems from the first midterm.

(b) Prove that rk(ST ) ≥ rk(S) + rk(T )− dim(V ).

(c) State and prove the analogue of (b) dealing with ranks of matrices.

Solution: (a) Note that

Ker(ST ) = {v ∈ V : ST (v) = 0} = {v ∈ V : S(T (v)) = 0} =

{v ∈ V : T (v) ∈ Ker(S)} = T−1(Ker(S)).

Thus, null(ST ) = dim(Ker(ST )) = dimT−1(Ker(S)). On the other hand,

by Problem 2 in Midterm 1,

dim(T−1(Ker(S))) ≤ dim(Ker(S)) + dim(Ker(T )) = null(S) + null(T ).

(b) This follows directly from (a) and rank-nullity theorem.

(c) Statement: Let F be a field, A ∈ Matm×n(F ) and B ∈ Matn×p(F ).

Then rk(AB) = rk(A) + rk(B)− n.

Proof: Let U = F p, V = F n, W = Fm. Let S = LA : V → W and T = LB :

U → V . Then ST (v) = LA(LB(v)) = AB · v = LAB(v), so ST = LAB. Thus

rk(LAB) ≥ rk(LA)+rk(LB)−n by (b). Since rk(LA) = rk(A), rk(LB) = rk(B)

and rk(LAB) = rk(AB), we obtain that rk(AB) ≥ rk(A) + rk(B) − n, as

desired.

Problem 3: Let A ∈ Matm×n(F ), B ∈ Matn×p(F ), and suppose that

rk(A) = m and rk(B) = n. Determine rk(AB) and prove your answer.

Hint: Choose vector space U, V,W with dim(U) = p, dim(V ) = n and

dim(W ) = m, bases α of U , β of V and γ of W , and let T : U → V and
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S : V → W be the unique linear maps s.t. and [S]γβ = A and [T ]βα = B.

What can you say about S and T based on what you know about A and B?

Solution 1: As proved in class, rk(AB) ≤ min{rk(A), rk(B)} = min{m,n},
so in particular, rk(AB) ≤ m. On the other hand, by Problem 2(c), rk(AB) ≥
rk(A) + rk(B) − n = m + n − n = m. Combining the two inequalities, we

conclude that rk(AB) = m.

Solution 2: Let T and S be as in the hint. Then m = rk(A) = rk(S) =

dim(Im(S)). On the other hand, Im(S) ⊆ W and dim(W ) = m. Thus, we

must have Im(S) = W , so S : V → W is surjective. By the same argument,

T : U → V is surjective.

Since the composition of surjective maps is surjective, ST : U → W is

surjective. Thus Im(ST ) = W , so rk(ST ) = dim(Im(ST )) = dim(W ) = m.

Since AB = [ST ]γα, we have rk(AB) = rk(ST ) = m.

Problem 5: Let F be a field. A matrix A ∈ Matn×n(F ) is called skew-

symmetric if At = −A (where At is the transpose of A).

(a) Prove that if A ∈Matn×n(R) and n is odd, then det(A) = 0.

(b) Does the assertion of (a) remain valid if R is replaced by an arbitrary

field F? Prove or give a counterexample.

Solution: (a) The matrix −A is obtained from A by consecutively multi-

plying each row by −1. Each such operation multiplies determinant by −1,

so their composition multiplies determinant by (−1)n. Thus, det(−A) =

(−1)n det(A) = − det(A) since n is odd.

Since At = −A, we get det(A) = det(At) = det(−A) = − det(A). Thus,

2 det(A) = 0, and dividing both sides by 2, we get det(A) = 0.

(b) The proof in (a) works over a field F whenever one can divide by 2 in F ,

and this is possible ⇐⇒ 2 6= 0 in F (by definition 2 = 1 + 1). If F = Z2 (or

more generally if F is any field of characteristic 2), then 2 = 0, so the proof

in (a) does not work over F .

For a specific example, take F = Z2. Then At = −A for any Matn×n(F ) since

x = −x for all x ∈ F . Thus, any matrix A ∈ Matn×n(F ) with det(A) 6= 0

(e.g. A = In) gives a desired counterexample.

Problem 6: Let A = (aij) ∈Matn×n(F ).

(a) Suppose that A is diagonal, that is, aij = 0 for all i 6= j. Prove

directly from the definition of determinant given in class that det(A) =

a11a22 . . . ann.

(b) Now suppose that A is upper-triangular, that is, aij = 0 for all i > j.

Again prove directly from the definition of determinant given in class

that det(A) = a11a22 . . . ann.
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(c) Let A be upper-triangular, and suppose that akk = 0 for some k. Prove

without using determinants that rk(A) < n. Hint: Consider the first

k columns of A.

Solution: (a) det(A) =
∑

σ∈Sn
(−1)σmσ where mσ = a1σ(1) . . . anσ(n). If

σ = 12 . . . n is the identity permutation, then (−1)σmσ = a11a22 . . . ann. And

if σ is any other permutation, then σ(i) 6= i for at least one i, whence mσ = 0

since A is diagonal. Hence, det(A) = a11a22 . . . ann.

(b) Using the same notation as in (a), we shall show that if mσ 6= 0 for

some σ, then σ must be the identity permutation (and thus again det(A) =

a11a22 . . . ann).

Suppose that mσ 6= 0, so that akσ(k) 6= 0 for all 1 ≤ k ≤ n. Since A is

upper-triangular, an,i = 0 for i 6= n, and thus we must have σ(n) = n.

Similarly, since an−1,i = 0 for i 6= n − 1, n, we must have σ(n − 1) = n − 1

or n. Since σ is bijective and we already established that σ(n) = n, the only

possibility is that σ(n− 1) = n− 1.

Repeating this argument n− 2 more times, we conclude that σ(i) = i for all

1 ≤ i ≤ n.

(c) As usual, we denote the elements of the standard basis of F n by e1, . . . , en.

Since A is upper-triangular and akk = 0, the first k columns of A have zeroes

in ith row for all i ≥ k. Thus, the first k columns of A lie in Span(e1, . . . , ek−1).

Thus, if we denote by CSk(A) the vector space spanned by the first k columns

of A, then dim(CSk(A)) ≤ dim Span(e1, . . . , ek−1) = k−1, so CSk(A) can be

spanned by at most k − 1 elements. Hence CS(A), the entire column space

of A, can be spanned by at most (k − 1) + (n − k) = n − 1 elements, so

rk(A) = dim(CS(A)) ≤ n− 1 < n.
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