Homework #86. Solutions to selected problems.

Problem 2: In parts (a) and (b) let U, V, W be finite-dimensional vector
spaces and T': U — V and S : V — W linear maps.

(a) Prove that
null(ST) < null(S) + null(T)

(recall that null(R) = dim(Ker(R)) for a linear map R). Hint: You can
nicely apply the result of one of the problems from the first midterm.

(b) Prove that rk(ST) > rk(S) + rk(7") — dim(V').
(c) State and prove the analogue of (b) dealing with ranks of matrices.

Solution: (a) Note that

Ker(ST)={veV:5T(w)=0} ={veV:5T(v)) =0} =
{veV:T() € Ker(S)} = T~ Ker(S)).

Thus, null(ST) = dim(Ker(ST)) = dim T~ *(Ker(S)). On the other hand,
by Problem 2 in Midterm 1,

dim (7 (Ker(S9))) < dim(Ker(S)) + dim(Ker (7)) = null(S) + null(T).

(b) This follows directly from (a) and rank-nullity theorem.

(c) Statement: Let F' be a field, A € Mat,,x,(F) and B € Mat,x,(F).
Then rk(AB) = rk(A) + 1k(B) — n.

Proof: Let U =FP, V =F" W =F". Let S=L,:V =>WandT = Lp :
U — V. Then ST(v) = La(Lp(v)) = AB-v = Lag(v), so ST = Lap. Thus
tk(Lap) > rk(La)+rk(Lg)—n by (b). Sincerk(L ) = rk(A), rk(Lp) = 1k(B)
and rk(Lag) = rk(AB), we obtain that rk(AB) > rk(A) + rk(B) — n, as
desired.

Problem 3: Let A € Mat,,«,(F), B € Mat,«,(F), and suppose that
tk(A) = m and rk(B) = n. Determine rk(AB) and prove your answer.
Hint: Choose vector space U,V,W with dim(U) = p, dim(V) = n and
dim(W) = m, bases a of U, 8 of V and v of W, and let T': U — V and



S .V — W be the unique linear maps s.t. and [S]} = A and [T] = B.
What can you say about S and T based on what you know about A and B?
Solution 1: As proved in class, tk(AB) < min{rk(A),rk(B)} = min{m,n},
so in particular, rk(AB) < m. On the other hand, by Problem 2(c), rk(AB) >
rk(A) + 1k(B) —n = m +n —n = m. Combining the two inequalities, we
conclude that rk(AB) = m.

Solution 2: Let 7" and S be as in the hint. Then m = rk(A) = 1k(S5) =
dim(Im(S)). On the other hand, Im(S) € W and dim(W) = m. Thus, we
must have Im(S) = W, so S : V — W is surjective. By the same argument,
T :U — V is surjective.

Since the composition of surjective maps is surjective, ST : U — W is
surjective. Thus Im(ST) = W, so rk(ST) = dim(Im(ST)) = dim(W) = m.
Since AB = [ST], we have rk(AB) = rk(ST) = m.

Problem 5: Let F' be a field. A matrix A € Mat, x,(F) is called skew-
symmetric if A" = —A (where A" is the transpose of A).

(a) Prove that if A € Mat,«,(R) and n is odd, then det(A) = 0.

(b) Does the assertion of (a) remain valid if R is replaced by an arbitrary
field F'? Prove or give a counterexample.

Solution: (a) The matrix —A is obtained from A by consecutively multi-
plying each row by —1. Each such operation multiplies determinant by —1,
so their composition multiplies determinant by (—1)". Thus, det(—A) =
(—1)"det(A) = —det(A) since n is odd.

Since A' = —A, we get det(A) = det(A") = det(—A) = —det(A). Thus,
2det(A) = 0, and dividing both sides by 2, we get det(A) = 0.

(b) The proof in (a) works over a field F' whenever one can divide by 2 in F,
and this is possible <= 2 # 0 in F' (by definition 2 = 14 1). If F' = Z, (or
more generally if F' is any field of characteristic 2), then 2 = 0, so the proof
in (a) does not work over F'.

For a specific example, take F' = Z,. Then A" = — A for any Mat,,«,(F) since
x = —x for all z € F. Thus, any matrix A € Mat,«,(F') with det(A4) # 0
(e.g. A=1,) gives a desired counterexample.

Problem 6: Let A = (a;;) € Mat,x,(F).
(a) Suppose that A is diagonal, that is, a;; = 0 for all i # j. Prove
directly from the definition of determinant given in class that det(A) =

a11a92 ... Qpp-

(b) Now suppose that A is upper-triangular, that is, a;; = 0 for all ¢ > j.
Again prove directly from the definition of determinant given in class
that det(A) = A11G922 . .. Qpp.-



(c) Let A be upper-triangular, and suppose that agr = 0 for some k. Prove
without using determinants that rk(A) < n. Hint: Consider the first
k columns of A.

Solution: (a) det(A) = > g (—1)7my; where m, = ai501) - - Gnom). If
o = 12...nis the identity permutation, then (—1)7m, = aj1ass ... ap,. And
if o is any other permutation, then o (i) # ¢ for at least one i, whence m, = 0
since A is diagonal. Hence, det(A) = aj1a2s . . . Gpy-

(b) Using the same notation as in (a), we shall show that if m, # 0 for
some o, then ¢ must be the identity permutation (and thus again det(A) =
11422 - .« - Gpy,).

Suppose that m, # 0, so that ayex) # 0 for all 1 < k < n. Since A is
upper-triangular, a,; = 0 for i # n, and thus we must have o(n) = n.
Similarly, since a,_;; = 0 for ¢ # n — 1,n, we must have o(n — 1) =n — 1
or n. Since o is bijective and we already established that o(n) = n, the only
possibility is that o(n — 1) =n — 1.

Repeating this argument n — 2 more times, we conclude that o (i) = i for all
1 <1< n.

(c) As usual, we denote the elements of the standard basis of F™ by e, ..., e,.
Since A is upper-triangular and ay = 0, the first k£ columns of A have zeroes
in i*" row for all i > k. Thus, the first k& columns of A lie in Span(ey, ..., ex_1).
Thus, if we denote by C'S,(A) the vector space spanned by the first k& columns
of A, then dim(CSk(A)) < dim Span(ey, ...,ex—1) = k—1, so C'Sg(A) can be
spanned by at most & — 1 elements. Hence C'S(A), the entire column space
of A, can be spanned by at most (k — 1) + (n — k) = n — 1 elements, so
tk(A) = dim(CS(A)) <n—1<n.



