Homework #6. Solutions to selected problems.

Problem 2: In parts (a) and (b) let U, V, W be finite-dimensional vector spaces and $T: U \to V$ and $S: V \to W$ linear maps.

(a) Prove that

$$\operatorname{null}(ST) \le \operatorname{null}(S) + \operatorname{null}(T)$$

(recall that $\operatorname{null}(R) = \dim(\operatorname{Ker}(R))$ for a linear map R). Hint: You can nicely apply the result of one of the problems from the first midterm.

- (b) Prove that $\operatorname{rk}(ST) \ge \operatorname{rk}(S) + \operatorname{rk}(T) \dim(V)$.
- (c) State and prove the analogue of (b) dealing with ranks of matrices.

Solution: (a) Note that

$$\operatorname{Ker}(ST) = \{ v \in V : ST(v) = 0 \} = \{ v \in V : S(T(v)) = 0 \} = \{ v \in V : T(v) \in \operatorname{Ker}(S) \} = T^{-1}(\operatorname{Ker}(S)).$$

Thus, $\operatorname{null}(ST) = \dim(\operatorname{Ker}(ST)) = \dim T^{-1}(\operatorname{Ker}(S))$. On the other hand, by Problem 2 in Midterm 1,

$$\dim(T^{-1}(\operatorname{Ker}(S))) \le \dim(\operatorname{Ker}(S)) + \dim(\operatorname{Ker}(T)) = \operatorname{null}(S) + \operatorname{null}(T).$$

(b) This follows directly from (a) and rank-nullity theorem.

(c) **Statement:** Let F be a field, $A \in Mat_{m \times n}(F)$ and $B \in Mat_{n \times p}(F)$. Then rk(AB) = rk(A) + rk(B) - n.

Proof: Let $U = F^p$, $V = F^n$, $W = F^m$. Let $S = L_A : V \to W$ and $T = L_B : U \to V$. Then $ST(v) = L_A(L_B(v)) = AB \cdot v = L_{AB}(v)$, so $ST = L_{AB}$. Thus $\operatorname{rk}(L_{AB}) \ge \operatorname{rk}(L_A) + \operatorname{rk}(L_B) - n$ by (b). Since $\operatorname{rk}(L_A) = \operatorname{rk}(A)$, $\operatorname{rk}(L_B) = \operatorname{rk}(B)$ and $\operatorname{rk}(L_{AB}) = \operatorname{rk}(AB)$, we obtain that $\operatorname{rk}(AB) \ge \operatorname{rk}(A) + \operatorname{rk}(B) - n$, as desired.

Problem 3: Let $A \in Mat_{m \times n}(F)$, $B \in Mat_{n \times p}(F)$, and suppose that rk(A) = m and rk(B) = n. Determine rk(AB) and prove your answer. **Hint:** Choose vector space U, V, W with $\dim(U) = p$, $\dim(V) = n$ and $\dim(W) = m$, bases α of U, β of V and γ of W, and let $T : U \to V$ and $S: V \to W$ be the unique linear maps s.t. and $[S]^{\gamma}_{\beta} = A$ and $[T]^{\beta}_{\alpha} = B$. What can you say about S and T based on what you know about A and B? **Solution 1:** As proved in class, $\operatorname{rk}(AB) \leq \min\{\operatorname{rk}(A), \operatorname{rk}(B)\} = \min\{m, n\}$, so in particular, $\operatorname{rk}(AB) \leq m$. On the other hand, by Problem 2(c), $\operatorname{rk}(AB) \geq \operatorname{rk}(A) + \operatorname{rk}(B) - n = m + n - n = m$. Combining the two inequalities, we conclude that $\operatorname{rk}(AB) = m$.

Solution 2: Let T and S be as in the hint. Then $m = \operatorname{rk}(A) = \operatorname{rk}(S) = \dim(\operatorname{Im}(S))$. On the other hand, $\operatorname{Im}(S) \subseteq W$ and $\dim(W) = m$. Thus, we must have $\operatorname{Im}(S) = W$, so $S : V \to W$ is surjective. By the same argument, $T : U \to V$ is surjective.

Since the composition of surjective maps is surjective, $ST : U \to W$ is surjective. Thus Im(ST) = W, so $\text{rk}(ST) = \dim(\text{Im}(ST)) = \dim(W) = m$. Since $AB = [ST]^{\gamma}_{\alpha}$, we have rk(AB) = rk(ST) = m.

Problem 5: Let F be a field. A matrix $A \in Mat_{n \times n}(F)$ is called **skew-symmetric** if $A^t = -A$ (where A^t is the transpose of A).

- (a) Prove that if $A \in Mat_{n \times n}(\mathbb{R})$ and n is odd, then det(A) = 0.
- (b) Does the assertion of (a) remain valid if \mathbb{R} is replaced by an arbitrary field F? Prove or give a counterexample.

Solution: (a) The matrix -A is obtained from A by consecutively multiplying each row by -1. Each such operation multiplies determinant by -1, so their composition multiplies determinant by $(-1)^n$. Thus, $\det(-A) = (-1)^n \det(A) = -\det(A)$ since n is odd.

Since $A^t = -A$, we get $det(A) = det(A^t) = det(-A) = -det(A)$. Thus, 2 det(A) = 0, and dividing both sides by 2, we get det(A) = 0.

(b) The proof in (a) works over a field F whenever one can divide by 2 in F, and this is possible $\iff 2 \neq 0$ in F (by definition 2 = 1 + 1). If $F = \mathbb{Z}_2$ (or more generally if F is any field of characteristic 2), then 2 = 0, so the proof in (a) does not work over F.

For a specific example, take $F = \mathbb{Z}_2$. Then $A^t = -A$ for any $Mat_{n \times n}(F)$ since x = -x for all $x \in F$. Thus, any matrix $A \in Mat_{n \times n}(F)$ with $det(A) \neq 0$ (e.g. $A = I_n$) gives a desired counterexample.

Problem 6: Let $A = (a_{ij}) \in Mat_{n \times n}(F)$.

- (a) Suppose that A is diagonal, that is, $a_{ij} = 0$ for all $i \neq j$. Prove directly from the definition of determinant given in class that $\det(A) = a_{11}a_{22}\ldots a_{nn}$.
- (b) Now suppose that A is upper-triangular, that is, $a_{ij} = 0$ for all i > j. Again prove directly from the definition of determinant given in class that $\det(A) = a_{11}a_{22}\ldots a_{nn}$.

(c) Let A be upper-triangular, and suppose that $a_{kk} = 0$ for some k. Prove without using determinants that rk(A) < n. **Hint:** Consider the first k columns of A.

Solution: (a) det $(A) = \sum_{\sigma \in S_n} (-1)^{\sigma} m_{\sigma}$ where $m_{\sigma} = a_{1\sigma(1)} \dots a_{n\sigma(n)}$. If $\sigma = 12 \dots n$ is the identity permutation, then $(-1)^{\sigma} m_{\sigma} = a_{11}a_{22} \dots a_{nn}$. And if σ is any other permutation, then $\sigma(i) \neq i$ for at least one *i*, whence $m_{\sigma} = 0$ since *A* is diagonal. Hence, det $(A) = a_{11}a_{22} \dots a_{nn}$.

(b) Using the same notation as in (a), we shall show that if $m_{\sigma} \neq 0$ for some σ , then σ must be the identity permutation (and thus again det(A) = $a_{11}a_{22}\ldots a_{nn}$).

Suppose that $m_{\sigma} \neq 0$, so that $a_{k\sigma(k)} \neq 0$ for all $1 \leq k \leq n$. Since A is upper-triangular, $a_{n,i} = 0$ for $i \neq n$, and thus we must have $\sigma(n) = n$.

Similarly, since $a_{n-1,i} = 0$ for $i \neq n-1, n$, we must have $\sigma(n-1) = n-1$ or n. Since σ is bijective and we already established that $\sigma(n) = n$, the only possibility is that $\sigma(n-1) = n-1$.

Repeating this argument n-2 more times, we conclude that $\sigma(i) = i$ for all $1 \le i \le n$.

(c) As usual, we denote the elements of the standard basis of F^n by e_1, \ldots, e_n . Since A is upper-triangular and $a_{kk} = 0$, the first k columns of A have zeroes in i^{th} row for all $i \ge k$. Thus, the first k columns of A lie in $\text{Span}(e_1, \ldots, e_{k-1})$. Thus, if we denote by $CS_k(A)$ the vector space spanned by the first k columns of A, then $\dim(CS_k(A)) \le \dim \text{Span}(e_1, \ldots, e_{k-1}) = k - 1$, so $CS_k(A)$ can be spanned by at most k - 1 elements. Hence CS(A), the entire column space of A, can be spanned by at most (k - 1) + (n - k) = n - 1 elements, so $\operatorname{rk}(A) = \dim(CS(A)) \le n - 1 < n$.