Solutions to selected problems in homeworks 9-11 (to be continued).

Problem 9.7: Find the Jordan canonical form and a Jordan basis for the

matrix
210 0
0210
A=100 3 0
010 3

Solution: Step 1: we compute eigenvalues and multiplicities. Using the
formula for computing block-upper-triangular or block-lower- triangular ma-
trices we have

det(A— M) =(2—MN)det | O

= O W
w o O
I

(2= A)(3 — \)det (g 3> — (2= A)2(B =) = (A —2)2(\ —3)?

Thus, there are two eigenvalues 2 and 3 and my(A) = mg(A) = 2.

Step 2: We compute dot diagrams Dy(A) and Ds(A).
0100

We have A — 2] =

. The last three vectors are easily seen

—_ =

00 0
00 0
0101
to be linearly independent, and the first column is zero, so rk(A — 2I) = 3.
Therefore, the first row of Dy(A) has rk((A—21)°)—rk((A—21)') =4-3 =1
dot, so Dy(A) has only one column (which must have length 2).

Similar computation shows that the dot diagram D3(A) also has only one
column of length 2. Therefore,

JOF(A) =

S OO
S O N -
S w o o
w = o o

Step 3: We compute the generalized eigenspaces Ks(A) and K3(A). In fact,
for computational purposes it will be more convenient to work with the linear
map T = Ly, left multiplication by A (of course, Ky(A) = Ky(T) and
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K3(A) = K3(T)). Since the dot diagram Ds(7T") has two rows, we have
Ko(T) = Ker((T — 21)?) and similarly K3(T) = Ker((T' —31)?). To compute
these we first determine the action of the linear maps (7' —21)% and (T'—31)?
on elements of the standard basis ey, s, €3, 4.

We have T'—21 : e, — 0, ey e1+eyq, e3> e3+e3, e4r— ey Hence
(T—20)%:e;— 00, exrse+e ey, €3+ ex+e3— e +eg+
e3+eq, ey +— eq— eyq. Clearly, e; and ey — ey4 lie in Ker((T — 2I)?), and
since dim Ker((T — 21)?) = my(T) = 2, we have Ky(T) = Ker((T' — 2I)?) =
Span(ey, ey — €4).

Similarly T'— 31 : e; — —ey, ey +— e —eg+ey4, €3+ ey, €4 — 0,80

(T —3I)%: e ey, egrs —ep — (e1 — ey +eq) = —2e; + ey — ey,

€3 F> €1 — €3 + €y, €4|—>0

Again we note that e, and e; + e5 + e3 lie in Ker((T — 31)?), and since
dim Ker((T' — 31)?) = m3(T) = 2, we have K3(T) = Ker((T — 3I)?) =
Span(e; + e + €3, €4).

Step 4: Finally, we compute a Jordan basis. In Example 2 of Lecture 27 we
explicitly discussed an algorithm for computing a Jordan basis for Tjk, in
case when the dot diagram D,(7T) is one column of length 3. Clearly, the
same argument shows that if the dot diagram is one column of length 2, the
following algorithm works: take any w € Ker((T'— \I)?) \ Ker((T'— A\I)) and
let v = (T"— AM)w. Then {v,w} is a Jordan basis for Tjx,

Since both dot diagrams Do(7T') and D3(T") consist of one column of length
2, we apply the above algorithm first to A = 2 and then to A = 3 and then
take the union of the corresponding bases.

A = 2: From the above computation we see that Ker(T — 2/) = Span(e; ), so
we can let w = ey —ey. Then v = (T —2[)(es — e4) = (€1 + e4) — eq = €.

A = 3: From the above computation we see that Ker(T — 37) = Span(ey), so
we can let w =e; +ex+e3. Thenv=(T—3I)(e; +ex+e3) = (—e1)+ (e1 —
ey + e4) + eo = e4. So, our final answer for a Jordan basis (which matches
the order blocks for the JCF stated in Step 2) is

{e1,e2 —eq,eq,e1 + €3 + €3}

Note that the part of the above Jordan basis corresponding to each eigen-
value A coincides with the basis of the generalized eigenspace K, (T') found
in Step 3. This is a coincidence!!! Note that the vectors e; and e4 (the initial
vectors of nilpotent (T'—21)- and (T —31I)-cycles, respectively), did not come
from Step 3, but reappeared in Step 4.
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Problem 11.1:

(a) Prove that there exist NO matrix A € Mat3y3(Q) (where Q denotes
rationals) s.t. A? = 5I. Hint: Use minimal polynomials.

(b) Given an example of a matrix A € Matzy3(R) s.t. A? = 5I. Then
explain where your proof from (a) would break down if Q is replaced
by R.

Solution: (a) First note that the matrix A = (g é) € Matyy2(Q) does

satisfy the equation A% = 51, so in our proof we have to use the fact that A
is 3 x 3.

Since A* = 5I, the polynomial 2? — 5 lies in Ann(A) and thus pa(z)
divides 22 — 5. Since 22 — 5 is monic and irreducible over Q, we must have
pa(z) = 2% —5.

Now consider x 4(x). We know that p4(z) divides xa(x), so

Xa(z) = pa(x)p(z) for some polynomial p(z) € P(Q). (% * *)

We also know that deg(xa(z)) = 3 and deg(ua(z)) = 2, so deg(p(z)) =
3—2=1 by (***). Moreover, pus(z) and xa(x) are both monic, so p(z) is
also monic, again by (***). Thus, p(z) € P(Q) is monic of degree one, so
p(z) = x — « for some a € Q.

This implies that « is a root of y 4(z) in Q. On the other hand, by Lecture 21,
pa(x) and xa(z) must have the same roots (in any field), so a is also a
rational root of pa(x) = x? — 5. But the only real roots of z*> — 5 are
+v/5 ¢ Q, so 2% — 5 has no rational roots, which is a contradiction.

(b) The scalar matrix A = /51 = diag(+/5,v/5,v/5) satisfies A2 = 5I. The
proof from (a) does not work over R since x? — 5 is reducible over R.

Problem 11.3: Let F' be a field, n € N and V = Mat,«,(F). Define the
function H : V xV — F by H(A, B) = tr(AB).

(a) Prove that H is a non-degenerate symmetric bilinear form on V.
(b) Assume that char(F') # 2. Find an H-orthogonal basis of V.

Solution: (a) Using the fact that tr : V' — F is a linear map (as established
in HW#1), we have H(A+ B, C) = tr((A+B)C) = tr(AC+BC) = tr(AC)+
tr(BC) = H(A,C)+ H(B,C). Similarly, H(A,B+C) = H(A,B)+ H(A,C)
and H(AA, B) = H(A,\B) = AH(A, B) for all A € F', so H is bilinear. Since

3



tr(AB) = tr(BA) by HW#7.5(a), H is symmetric. It remains to show that
H is non-degenerate.

For any matrix A € V we have A = Z” 1
of A and, as usual, e;; is the matrix whose (4, j)-entry is equal to 1 and all

A,je;; where A;; is the (4, j)-entry

other entries are equal to 0. Using the formula e;jer; = d;re; we have
n n
H(A, ekl) = tr(z Aijeijekl) = tr(z Aijéjkeil) =

i,j=1 i,j=1
Z Aljajktr ezl Z AZ](SJk(SZl

1,j=1 2,7=1

The only nonzero term in this sum comes from j = k and ¢ = [ and is equal
to Aw, so H(A,er) = Awg. Thus, if A € LKer(H), then Ay, = 0 for each
1<k, l<mn,so A=0. Thus, H is non-degenerate.

(b) We start with introducing some terminology. Two subspaces U and
W of V are called H-orthogonal if H(u,w) = 0 for all u € U and w € W.
The following results are straightforward.

(i) Let Sy be a basis of U and [y a basis of W, and assume that H (u, w) =
0 for all u € By and w € By. Then U and W are H-orthogonal.

(ii) Suppose that V = &%  Wj, where W; and W, are H-orthogonal for
i # j. Let 3; be a basis of W; for 1 <i < k and 3 = U, 3;. Let H; be
the restriction of H to W;. Then

[H]g = &, [Hi]s,,

that is, the matrix of H with respect to (3 is block-diagonal with blocks
equal to the matrices of H; with respect to ;. In particular, this means
that if we choose 3; s.t. [H;|s, is diagonal for each i, then [H]z is also
diagonal.

We now return to our problem. Let V; = Span(e;), and for 1 <i < j <mn
let Vi; = Span(e;j, e;;). It is then clear (e.g. by HW#48.3) that

V=(e e @ Vi)

1<i<j<n

Using fact (i) above and computations in (a), it is easy to check that any
two (distinct) subspaces on the RHS of the above decomposition are H-
orthogonal. Thus, by (ii) if we find bases §; of V; and f;; of Vj; s.t [H,]s,
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and [Hyj]g,; are all diagonal (where H; = H)y, and H;; = Hy,), then [H]s is
diagonal for 5 = (UG;) U (UG;;).

The subspaces V; are one-dimensional, so [H;]g, is diagonal for any choice
of 3;, and we simply set 3; = {e;}.

We claim that we can let 3;; = {e;;—eji, e;;+€;:} for i < j. One way to get
this basis is to apply Gram-Schmidt orthogonalization from Theorem 25.4
to the bilinear form H;;. But it is also easy to check directly that (;; works.
First, we need to check that (3;; is a basis of V};, and this is where the
assumption that char(F) # 2 comes into play (CHECK THIS). Once this is
done, we simply verify that H(e;; — €ji, €;; + €;i) = H(eij, €i;) + H(eij, €5i) —
H{(eji, ei5) — H(eji,e0) = 0+1—1-0= 0, so (since H is symmetric), [Hyj|gs,;
is diagonal. Thus, the basis

ﬁ:{eii:1§i§n}l_l{eij—eji,eij+eji:1§i<j§n}

is H-orthogonal.



