
Solutions to selected problems in homeworks 9-11 (to be continued).

Problem 9.7: Find the Jordan canonical form and a Jordan basis for the

matrix

A =


2 1 0 0
0 2 1 0
0 0 3 0
0 1 0 3

 .

Solution: Step 1: we compute eigenvalues and multiplicities. Using the

formula for computing block-upper-triangular or block-lower- triangular ma-

trices we have

det(A− λI) = (2− λ)det

2 1 0
0 3 0
1 0 3

 =

(2− λ)(3− λ)det

(
2 1
0 3

)
= (2− λ)2(3− λ)2 = (λ− 2)2(λ− 3)2

Thus, there are two eigenvalues 2 and 3 and m2(A) = m3(A) = 2.

Step 2: We compute dot diagrams D2(A) and D3(A).

We have A − 2I =


0 1 0 0
0 0 1 0
0 0 1 0
0 1 0 1

 . The last three vectors are easily seen

to be linearly independent, and the first column is zero, so rk(A − 2I) = 3.

Therefore, the first row of D2(A) has rk((A−2I)0)−rk((A−2I)1) = 4−3 = 1

dot, so D2(A) has only one column (which must have length 2).

Similar computation shows that the dot diagram D3(A) also has only one

column of length 2. Therefore,

JCF (A) =


2 1 0 0
0 2 0 0
0 0 3 1
0 0 0 3

 .

Step 3: We compute the generalized eigenspaces K2(A) and K3(A). In fact,

for computational purposes it will be more convenient to work with the linear

map T = LA, left multiplication by A (of course, K2(A) = K2(T ) and
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K3(A) = K3(T )). Since the dot diagram D2(T ) has two rows, we have

K2(T ) = Ker((T − 2I)2) and similarly K3(T ) = Ker((T − 3I)2). To compute

these we first determine the action of the linear maps (T −2I)2 and (T −3I)2

on elements of the standard basis e1, e2, e3, e4.

We have T −2I : e1 7→ 0, e2 7→ e1 +e4, e3 7→ e2 +e3, e4 7→ e4. Hence

(T − 2I)2 : e1 7→ 0 7→ 0, e2 7→ e1 + e4 7→ e4, e3 7→ e2 + e3 7→ e1 + e2 +

e3 + e4, e4 7→ e4 7→ e4. Clearly, e1 and e2 − e4 lie in Ker((T − 2I)2), and

since dim Ker((T − 2I)2) = m2(T ) = 2, we have K2(T ) = Ker((T − 2I)2) =

Span(e1, e2 − e4).
Similarly T − 3I : e1 7→ −e1, e2 7→ e1 − e2 + e4, e3 7→ e2, e4 7→ 0, so

(T − 3I)2 : e1 7→ e1, e2 7→ −e1 − (e1 − e2 + e4) = −2e1 + e2 − e4,
e3 7→ e1 − e2 + e4, e4 7→ 0

Again we note that e4 and e1 + e2 + e3 lie in Ker((T − 3I)2), and since

dim Ker((T − 3I)2) = m3(T ) = 2, we have K3(T ) = Ker((T − 3I)2) =

Span(e1 + e2 + e3, e4).

Step 4: Finally, we compute a Jordan basis. In Example 2 of Lecture 27 we

explicitly discussed an algorithm for computing a Jordan basis for T|Kλ in

case when the dot diagram Dλ(T ) is one column of length 3. Clearly, the

same argument shows that if the dot diagram is one column of length 2, the

following algorithm works: take any w ∈ Ker((T −λI)2)\Ker((T −λI)) and

let v = (T − λI)w. Then {v, w} is a Jordan basis for T|Kλ
Since both dot diagrams D2(T ) and D3(T ) consist of one column of length

2, we apply the above algorithm first to λ = 2 and then to λ = 3 and then

take the union of the corresponding bases.

λ = 2: From the above computation we see that Ker(T − 2I) = Span(e1), so

we can let w = e2 − e4. Then v = (T − 2I)(e2 − e4) = (e1 + e4)− e4 = e1.

λ = 3: From the above computation we see that Ker(T − 3I) = Span(e4), so

we can let w = e1 + e2 + e3. Then v = (T − 3I)(e1 + e2 + e3) = (−e1) + (e1−
e2 + e4) + e2 = e4. So, our final answer for a Jordan basis (which matches

the order blocks for the JCF stated in Step 2) is

{e1, e2 − e4, e4, e1 + e2 + e3}.

Note that the part of the above Jordan basis corresponding to each eigen-

value λ coincides with the basis of the generalized eigenspace Kλ(T ) found

in Step 3. This is a coincidence!!! Note that the vectors e1 and e4 (the initial

vectors of nilpotent (T−2I)- and (T−3I)-cycles, respectively), did not come

from Step 3, but reappeared in Step 4.
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Problem 11.1:

(a) Prove that there exist NO matrix A ∈ Mat3×3(Q) (where Q denotes

rationals) s.t. A2 = 5I. Hint: Use minimal polynomials.

(b) Given an example of a matrix A ∈ Mat3×3(R) s.t. A2 = 5I. Then

explain where your proof from (a) would break down if Q is replaced

by R.

Solution: (a) First note that the matrix A =

(
0 1
5 0

)
∈ Mat2×2(Q) does

satisfy the equation A2 = 5I, so in our proof we have to use the fact that A

is 3× 3.

Since A2 = 5I, the polynomial x2 − 5 lies in Ann(A) and thus µA(x)

divides x2 − 5. Since x2 − 5 is monic and irreducible over Q, we must have

µA(x) = x2 − 5.

Now consider χA(x). We know that µA(x) divides χA(x), so

χA(x) = µA(x)p(x) for some polynomial p(x) ∈ P(Q). (∗ ∗ ∗)

We also know that deg(χA(x)) = 3 and deg(µA(x)) = 2, so deg(p(x)) =

3 − 2 = 1 by (***). Moreover, µA(x) and χA(x) are both monic, so p(x) is

also monic, again by (***). Thus, p(x) ∈ P(Q) is monic of degree one, so

p(x) = x− α for some α ∈ Q.

This implies that α is a root of χA(x) in Q. On the other hand, by Lecture 21,

µA(x) and χA(x) must have the same roots (in any field), so α is also a

rational root of µA(x) = x2 − 5. But the only real roots of x2 − 5 are

±
√

5 6∈ Q, so x2 − 5 has no rational roots, which is a contradiction.

(b) The scalar matrix A =
√

5 I = diag(
√

5,
√

5,
√

5) satisfies A2 = 5I. The

proof from (a) does not work over R since x2 − 5 is reducible over R.

Problem 11.3: Let F be a field, n ∈ N and V = Matn×n(F ). Define the

function H : V × V → F by H(A,B) = tr(AB).

(a) Prove that H is a non-degenerate symmetric bilinear form on V .

(b) Assume that char(F ) 6= 2. Find an H-orthogonal basis of V .

Solution: (a) Using the fact that tr : V → F is a linear map (as established

in HW#1), we have H(A+B,C) = tr((A+B)C) = tr(AC+BC) = tr(AC)+

tr(BC) = H(A,C)+H(B,C). Similarly, H(A,B+C) = H(A,B)+H(A,C)

and H(λA,B) = H(A, λB) = λH(A,B) for all λ ∈ F , so H is bilinear. Since
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tr(AB) = tr(BA) by HW#7.5(a), H is symmetric. It remains to show that

H is non-degenerate.

For any matrix A ∈ V we have A =
∑n

i,j=1Aijeij where Aij is the (i, j)-entry

of A and, as usual, eij is the matrix whose (i, j)-entry is equal to 1 and all

other entries are equal to 0. Using the formula eijekl = δjkeil we have

H(A, ekl) = tr(
n∑

i,j=1

Aijeijekl) = tr(
n∑

i,j=1

Aijδjkeil) =

n∑
i,j=1

Aijδjktr(eil) =
n∑

i,j=1

Aijδjkδil.

The only nonzero term in this sum comes from j = k and i = l and is equal

to Alk, so H(A, ekl) = Alk. Thus, if A ∈ LKer(H), then Alk = 0 for each

1 ≤ k, l ≤ n, so A = 0. Thus, H is non-degenerate.

(b) We start with introducing some terminology. Two subspaces U and

W of V are called H-orthogonal if H(u,w) = 0 for all u ∈ U and w ∈ W .

The following results are straightforward.

(i) Let βU be a basis of U and βW a basis of W , and assume that H(u,w) =

0 for all u ∈ βU and w ∈ βW . Then U and W are H-orthogonal.

(ii) Suppose that V = ⊕ki=1Wk, where Wi and Wj are H-orthogonal for

i 6= j. Let βi be a basis of Wi for 1 ≤ i ≤ k and β = tki=1βi. Let Hi be

the restriction of H to Wi. Then

[H]β = ⊕ki=1[Hi]βi ,

that is, the matrix of H with respect to β is block-diagonal with blocks

equal to the matrices of Hi with respect to βi. In particular, this means

that if we choose βi s.t. [Hi]βi is diagonal for each i, then [H]β is also

diagonal.

We now return to our problem. Let Vi = Span(eii), and for 1 ≤ i < j ≤ n

let Vij = Span(eij, eji). It is then clear (e.g. by HW#8.3) that

V = (⊕ni=1Vi)⊕ (
⊕

1≤i<j≤n

Vij)

Using fact (i) above and computations in (a), it is easy to check that any

two (distinct) subspaces on the RHS of the above decomposition are H-

orthogonal. Thus, by (ii) if we find bases βi of Vi and βij of Vij s.t [Hi]βi
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and [Hij]βij are all diagonal (where Hi = H|Vi and Hij = H|Vij), then [H]β is

diagonal for β = (tβi) t (tβij).
The subspaces Vi are one-dimensional, so [Hi]βi is diagonal for any choice

of βi, and we simply set βi = {ei}.
We claim that we can let βij = {eij−eji, eij+eji} for i < j. One way to get

this basis is to apply Gram-Schmidt orthogonalization from Theorem 25.4

to the bilinear form Hij. But it is also easy to check directly that βij works.

First, we need to check that βij is a basis of Vij, and this is where the

assumption that char(F ) 6= 2 comes into play (CHECK THIS). Once this is

done, we simply verify that H(eij − eji, eij + eji) = H(eij, eij) +H(eij, eji)−
H(eji, eij)−H(eji, eji) = 0+1−1−0 = 0, so (since H is symmetric), [Hij]βij
is diagonal. Thus, the basis

β = {eii : 1 ≤ i ≤ n} t {eij − eji, eij + eji : 1 ≤ i < j ≤ n}

is H-orthogonal.
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