
Solutions to selected homework problems.

Problem 2.1: Let p be any prime and V = Z2
p, the standard two-

dimensional vector space over Zp. How many ordered bases does V have?

Answer: (p2 − 1)(p2 − p).
Solution: First, by Corollary 3.5(c) any basis of V has two elements.

Lemma: Let v, w ∈ V . Then {v, w} is a basis of V ⇐⇒ v 6= 0 and w

is not a multiple of v.

Proof of Lemma: First note that by Corollary 3.5(e) {v, w} is a basis

⇐⇒ {v, w} is linearly independent. Thus, replacing the statement of the

lemma by contrapositive, we are reduced to proving the following:

{v, w} is linearly dependent ⇐⇒ v = 0 or w is a multiple of v.

“⇐” If v = 0, then 0 = 1 · v + 0 · w, and if w = λv for some λ, then

0 = 1 · w + (−λ) · v. In either case {v, w} is linearly dependent.

“⇒” If {v, w} is linearly dependent, there exist λ, µ ∈ F , not both 0 s.t.

λv + µw = 0. If µ = 0, then λv = 0 and λ 6= 0, so v = λ−1(λv) = 0. And if

µ 6= 0, then w = −λ
µ
v is a multiple of v. �

By Lemma, to find the number of bases we need to count the number of

ordered pairs (v, w) with v 6= 0 and w not a multiple of v. The total number

of vectors in V is the number of pairs (a, b) with a, b ∈ Zp. There are p

choices for a and p choices for b (and there are no dependencies between a

and b), so |V | = p2. Thus, there are p2 − 1 nonzero vectors in V , so we have

p2 − 1 choices for v.

Since v 6= 0, it has precisely p multiples (including itself) – indeed, since

|Zp| = p, there are at most p multiples, namely 0 · v, 1 · v, . . . , (p − 1) · v;

on the other hand, all these multiples are distinct: if λ, µ ∈ F are such that

λv = µv, then (λ− µ)v = 0, and if λ 6= µ, multiplying by (λ− µ)−1, we get

v = 0, which is contradiction.

So, once v has been chosen there are precisely p2−p choices for w. There-

fore, the total number of choices for the ordered pair (v, w) is (p2−1)(p2−p).
Problem 2.2: Prove Lemma 3.2 from class: If V is a vector space, S a

subset of V and v ∈ V , then Span(S ∪ {v}) = Span(S) ⇐⇒ v ∈ Span(S).

Solution: “⇒” Assume that Span(S∪{v}) = Span(S). Since v ∈ S∪{v}
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and T ⊆ Span(T ) for any set T , we get v ∈ Span(S ∪ {v}) = Span(S).

“⇐” Assume that v ∈ Span(S). Since S ⊆ Span(S), we have S ∪ {v} ⊆
Span(S) and therefore Span(S ∪{v}) ⊆ Span(Span(S)) by Theorem 2.1(e).

But Span(Span(S)) = Span(S) by Theorem 2.1(d), so Span(S ∪ {v}) ⊆
Span(S). The opposite inclusion Span(S) ⊆ Span(S∪{v} is clear (again by

Theorem 2.1(e) since S ⊆ S ∪ {v}). �

Problem 2.5(b): Let V = R2, and let U and W be subspaces of V with

dim(U) = dim(W ) = 1. Prove that W is a complement of U ⇐⇒ W 6= U .

Solution: “⇒” By contradiction. Suppose that W = U . Since we

assume that W is a complement of U , we have U ∩W = {0} which together

with W = U implies that U = U ∩ U = {0} and similarly W = {0}. But

then U+W = {0} 6= V , contrary to the assumption that W is a complement

of U .

“⇐” Suppose that W 6= U . Then at least one of the following holds: W

is not contained in U or U is not contained in W . WOLOG assume that

W is not contained in U . Then U ∩W is a proper subspace of W , so by

Theorem 1.11 (book) dim(U ∩W ) < dim(W ). Since dim(W ) = 1, the only

possibility is that dim(U∩W ) = 0 which means that U∩W = {0}. Also note

that dim(U) + dim(W ) = 1 + 1 = 2 = dim(V ). Hence, by Problem 2.4(c) we

conclude that V = U ⊕W , so W is a complement of U .

Problem 3.1 For each of the following maps T do the following: Prove

that T is linear and find a basis for Ker(T ) and Im(T ).

(a) T : P6(R)→ P6(R) given by T (f(x)) = f ′(x)

(b) T : P6(Z3) → P6(Z3) given by T (f(x)) = f ′(x) (where as before Z3 is

the field of congruence classes mod 3).

(c) T : P3(R) → R given by T (f(x)) = f(2), that is, T is the evaluation

map at x = 2.

(d) T : P3(R) → P4(R) given by T (f(x)) = (x + 1)p(x), that is, T is the

multiplication by x+ 1.

Answer:

(a) Ker(T ) has basis {1} and Im(T ) has basis {1, x, x2, x3, x4, x5}.

(b) Ker(T ) has basis {1, x3, x6} and Im(T ) has basis {1, x, x3, x4}.

(c) Ker(T ) has basis {x− 2, (x− 2)2, (x− 2)3} and Im(T ) has basis {1}.
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(d) Ker(T ) = {0}, so has the empty set ∅ as its only basis and Im(T ) has

basis {(x+ 1), x(x+ 1), x2(x+ 1), x3(x+ 1)}.

Of course, the choice of basis is not unique, and in the case of Ker(T ) in

(c) and Im(T ) in (d) there is no particularly natural choice of for a basis.

Justifitcaiton for (c) First note that Im(T ) = R since for any α ∈ R there

exists f(x) ∈ P3(R) s.t. f(2) = α (e.g. the constant polynomial f(x) =

α). So, dim(Im(T )) = 1, and by the rank-nullity theorem dim(Ker(T )) =

dim(P3(R))− dim(Im(T )) = 4− 1 = 3.

The polynomials x−2, (x−2)2, (x−2)3 vanish at 2, so they lie in Ker(T ).

They are also linearly independent (e.g. by HW#1.7 since they have distinct

degrees), and since there are 3 = dim(Ker(T )) of them, they must form a

basis.

Problem 3.6: Let V be a vector space and T : V → V a linear map. A

subspace W of V is called T -invariant if T (W ) ⊆ W where T (W ) = {T (w) :

w ∈ W}.

(a) Prove that Ker(T ) and Im(T ) are T -invariant subspaces

(b) Assume that dim(V ) < ∞ and W is a T -invariant subspace of V s.t.

V = W ⊕ Ker(T ). Prove that W = Im(T ). Hint: First show that

Im(T ) ⊆ W .

(c) Give an example with dim(V ) <∞ where the sum Im(T ) + Ker(T ) is

NOT direct.

(d) Use (b) and (c) to conclude that a T -invariant subspace may NOT have

a T -invariant complement.

Solution: (a) We know that 0 ∈ Ker(T ). Hence for any v ∈ Ker(T ) we

have T (v) = 0 ∈ Ker(T ), so Ker(T ) is T -invariant. Now take any w ∈ Im(T ).

Since Im(T ) ⊆ V , we have T (w) ∈ T (Im(T )) ⊆ T (V ) = Im(T ), so Im(T ) is

T -invariant.

(b) done in class on September 29th

(c) Take any n ≥ 1 and consider T : Pn(R)→ Pn(R) given by T (f(x)) =

f ′(x). Then any nonzero constant polynomial lies in both Ker(T ) and Im(T ),

so Ker(T )∩ Im(T ) 6= {0} and thus the sum Ker(T )+Im(T ) cannot be direct.

(d) Let us take any map T : V → W where the sum Ker(T ) + Im(T ) is

not direct (e.g. take the above map from (c)). We know that Ker(T ) is T -

invariant. Suppose that Ker(T ) has a T -invariant complement, that is, there

is a T -invariant subspace W s.t. V = Ker(T )⊕W . Then by (b) W = Im(T ).

This contradicts the assumption that the sum Ker(T ) + Im(T ) is not direct.
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Problem 3.7: Recall that sln(F ) denotes the space of all n×n matrices

over F with trace 0. In Problem 2 of HW#6 it was proved that dim(sln(F )) =

n2 − 1 after a considerable amount of work. Now give a short proof of this

fact by applying the rank-nullity theorem to a suitable linear map.

Solution: Let Matn(F ) be the vector space of all n × n matrices over

F , and consider the map T : Matn(F ) → F given by T (A) = tr(A). Then

Ker(T ) = sln(F ) (by definition) and Im(T ) = F since any α ∈ F is the trace

of some A ∈ Matn(F ) (e.g. α = tr(αe11)). So, dim(Im(T )) = 1 and by the

rank-nullity theorem dim(Ker(T )) = dim(Matn(F ))− dim(Im(T )) = n2− 1.

Problem 4.3: Let V be a finite-dimensional vector space and k ≤
dim(V ) a positive integer. Let T : V → V be a linear transformation. Prove

that the following are equivalent:

(a) There exists a T -invariant subspace W of V with dim(W ) = k (recall

that the notion of a T -invariant subspace is defined in Problem#6 of

Homework#3).

(b) There exists a basis B of V s.t. the matrix [T ]B has the block-diagonal

form (
Ak×k Bk×(n−k)

0(n−k)×k C(n−k)×(n−k).

)
where subscrpits indicate matrix sizes and 0(n−k)×k is the (n − k) × k
zero matrix.

Solution: “(b)⇒ (a)” Suppose that B = {v1, . . . , vn} and [T ]B = (aij)1≤i,j≤n.

By definition of [T ]B we have T (vj) =
∑n

i=1 aijvi for all 1 ≤ j ≤ n. On

the other hand, the assumption about the block-diagonal form of [T ]B from

(b) implies that aij = 0 for k + 1 ≤ i ≤ n and 1 ≤ j ≤ k. This means that

T (vj) =
k∑
i=1

aijvi for all 1 ≤ j ≤ k. (∗ ∗ ∗)

Let W = Span(v1, v2, . . . , vk); note that dim(W ) = k since {v1, . . . , vk} is

linearly independent, being a subset of a basis of V . By (***) T (vj) ∈ W for

all 1 ≤ j ≤ k, and since T is linear (and W is a subspace), we conclude that

T (w) ∈ W for all w ∈ Span(v1, v2, . . . , vk) = W . So, T (W ) ⊆ W , and thus

W is a T -invariant subspace with dim(W ) = k.

“(a)⇒ (b)” Choose an ordered basis {v1, . . . , vk} of W and extend it to

an ordered basis {v1, . . . , vn} of V ; call the latter basis B. Since W is T -

invariant, for each 1 ≤ j ≤ k we have T (vj) ∈ W , so T (vj) =
∑k

i=1 aijvi =∑k
i=1 aijvi +

∑n
i=k+1 0 · vi. This implies that the (i, j) entry of [T ]B is equal
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to 0 whenever 1 ≤ j ≤ k and k + 1 ≤ i ≤ n, so [T ]B has the required

block-diagonal form.

Problem 4.5: Let V be a finite-dimensional vector space and T : V → V

a linear map. Prove that the following are equivalent:

(i) T is a projection, that is, T = pU,W for some U and W with U⊕W = V

(ntte that pU,W is defined in Problem 4.4).

(ii) T 2 = T (where T 2 = T · T is the composition of T with itself)

(iii) There is an ordered basis β of V s.t. [T ]β = e11 + . . . + ekk for some

k ≤ dimV , that is, [T ]β is the diagonal matrix whose first k diagonal

entries are equal to 1 and the remaining diagonal entries are equal to

0.

Solution: We’ll prove that (i)⇒(iii)⇒(ii)⇒(i).

“(i)⇒(iii)”: choose some ordered bases {u1, . . . , uk} of U and {w1, . . . , wl}
of W . We claim that their ordered union β = {u1, . . . , uk, w1, . . . wl} (with

elements of W listed first) is a basis of V – this is not hard to prove directly,

but we can also deduce it from previous homework problems. Indeed, by

Problem 2.1(d) Span(β) = Span({u1, . . . , uk}) + Span({w1, . . . , wl}) = U +

W , so β spans U + W = V . Since V = U ⊕ W (the sum is direct), by

Problem 2.4, dim(V ) = dim(U) + dim(W ) = k+ l = |β|, so β is a basis of V

by Corollary 3.5(d).

Since T = pU,W , we have T (uj) = uj for 1 ≤ j ≤ k and T (wj) = 0 for

1 ≤ j ≤ l. We conclude that [T ]β has 1 as its (j, j)-entry for all 1 ≤ j ≤ k

and all other entires are 0. Therefore, [T ]β = e11 + . . .+ ekk.

“(iii)⇒(ii)”: Since [T ]β = e11 + . . .+ ekk, by direct computation we have

([T ]β)2 = [Tβ]. On the other hand, by Theorem 2.14(book) ([T ]β)2 = [T 2]β.

So, [T 2]β = [T ]β, and since a linear map is uniquely determined by its matrix

with respect to a given a basis, we conclude that T 2 = T .

“(ii)⇒(i)”: Assume that T 2 = T . We claim that

V = Ker(T )⊕ Im(T ).

Take any v ∈ Ker(T ) ∩ Im(T ). Then T (v) = 0 and v = T (u) for some u,

so v = T (u) = T 2(u) = T (T (u)) = T (v) = 0. Hence Ker(T ) ∩ Im(T ) = {0}.
On the other hand, by the rank-nullity theorem dim(Ker(T ))+dim(Im(T )) =

dim(V ). Combining the two results, we conclude that V = Ker(T )⊕ Im(T )

by Problem 2.4(c). (It is also not hard to show directly that V = Ker(T ) +

Im(T ): indeed, any v ∈ V can be written as v = (v − T (v)) + T (v) and

v − T (v) ∈ Ker(T ) for T (v − T (v)) = T (v)− T 2(v) = 0).
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Now let U = Im(T ) and W = Ker(T ). Then T (w) = 0 for all w ∈ W and

T (u) = u for all u ∈ U (for any u ∈ U can be written as u = T (z) for some

z and T (u) = T (T (z)) = T (z) = u). Therefore, T = pU,W by definition.

Problem 5.6: Prove Proposition 10.4: Let V be a finite-dimensional

vector space and W a subspace of V . Then

dim(W ) + dim(Ann(W )) = dim(V ).

See Problem 14 in § 2.6 for a hint.

Solution: Let n = dimV and m = dimW . Following the hint in the book,

choose a basis {v1, . . . , vm} ofW and extend it to a basis {v1, . . . , vm, vm+1, . . . , vn}
of V . Let {v∗1, . . . , v∗n} be the dual basis of V ∗, and let

B = {v∗m+1, . . . , v
∗
n}

Let us show thatB is a basis ofAnn(W ) (this would imply that dim(Ann(W )) =

n−m = dimV − dimW , as desired).

Note that B is linearly independent (being a subset of a basis of V ∗), so

we only need to check that Ann(W ) = Span(B).

Part 1: Span(B) ⊆ Ann(W ). First take any element of B, that is, v∗i
with m+ 1 ≤ i ≤ n. Then v∗i (vj) = 0 for all 1 ≤ j ≤ m (by definition of dual

basis), and by linearity v∗i (λ1v1 + . . .+λmvm) = 0 for all λ1, . . . , λm ∈ F . So,

v∗i (w) = 0 for all w ∈ Span(v1, . . . , vm) = W , so v∗i ∈ Ann(W ).

Thus, we proved that B ⊆ Ann(W ), and since Ann(W ) is a subspace (by

Problem 5.5), it follows that Span(B) ⊆ Ann(W ).

Part 2: Ann(W ) ⊆ Span(B). Take any f ∈ Ann(W ). Since {v∗1, . . . , v∗n}
is a basis of V ∗, we can write

f = λ1v
∗
1 + . . . λnv

∗
n for some λ1, . . . , λn ∈ F. (∗ ∗ ∗)

Since f ∈ Ann(W ), we must have f(vi) = 0 for 1 ≤ i ≤ m. Fix such i and

evaluate both sides of (***) at vi. Since v∗k(vi) = 0 for k 6= i and 1 for k = i,

we get that f(vi) = λi (and recall that f(vi) = 0). So, λi = 0 for 1 ≤ i ≤ m,

and therefore, f =
∑n

i=m+1 λiv
∗
i ∈ Span(B). �
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