Solutions to selected homework problems.

Problem 2.1: Let p be any prime and V = ZZ, the standard two-
dimensional vector space over Z,. How many ordered bases does V' have?

Answer: (p* —1)(p? — p).

Solution: First, by Corollary 3.5(c) any basis of V' has two elements.

Lemma: Let v,w € V. Then {v,w} is a basis of V <= v # 0 and w
is not a multiple of v.

Proof of Lemma: First note that by Corollary 3.5(e) {v,w} is a basis
<= {v,w} is linearly independent. Thus, replacing the statement of the
lemma by contrapositive, we are reduced to proving the following:

{v,w} is linearly dependent <= v =0 or w is a multiple of v.

‘" Ifo=0,then 0 =1-v+0-w, and if w = Av for some A, then
0=1-w+ (—=A)-v. In either case {v,w} is linearly dependent.

“=” If {v,w} is linearly dependent, there exist A, u € F', not both 0 s.t.
A+ pw = 0. If 4 =0, then \v =0 and A # 0, sov = A"*(A\v) = 0. And if
1 # 0, then w = —ﬁv is a multiple of v. [J

By Lemma, to find the number of bases we need to count the number of
ordered pairs (v, w) with v # 0 and w not a multiple of v. The total number
of vectors in V' is the number of pairs (a,b) with a,b € Z,. There are p
choices for a and p choices for b (and there are no dependencies between a
and b), so |V| = p®. Thus, there are p*> — 1 nonzero vectors in V', so we have
p? — 1 choices for v.

Since v # 0, it has precisely p multiples (including itself) — indeed, since
|Z,| = p, there are at most p multiples, namely 0-v,1-v,....(p — 1) - v;
on the other hand, all these multiples are distinct: if A, u € F' are such that
Av = pw, then (A — p)v = 0, and if X # p, multiplying by (A — u)™!, we get
v = 0, which is contradiction.

So, once v has been chosen there are precisely p? — p choices for w. There-
fore, the total number of choices for the ordered pair (v, w) is (p*—1)(p* —p).

Problem 2.2: Prove Lemma 3.2 from class: If V' is a vector space, S a
subset of V and v € V, then Span(S U {v}) = Span(S) <= v € Span(95).
Solution: “=" Assume that Span(SU{v}) = Span(S). Since v € SU{v}



and T C Span(T) for any set T, we get v € Span(S U {v}) = Span(S).

“<” Assume that v € Span(S). Since S C Span(S), we have S U {v} C
Span(S) and therefore Span(SU{v}) C Span(Span(S)) by Theorem 2.1(
But Span(Span(S)) = Span(S) by Theorem 2.1(d), so Span(S U {v})
Span(S). The opposite inclusion Span(S) C Span(SU{v} is clear (again by
Theorem 2.1(e) since S C SU{v}). O
Problem 2.5(b): Let V = R? and let U and W be subspaces of V with
dim(U) = dim(W) = 1. Prove that W is a complement of U <= W # U.

Solution: “=" By contradiction. Suppose that W = U. Since we
assume that W is a complement of U, we have U N W = {0} which together
with W = U implies that U = U N U = {0} and similarly W = {0}. But
then U+ W = {0} # V, contrary to the assumption that W is a complement
of U.

“<” Suppose that W # U. Then at least one of the following holds: W
is not contained in U or U is not contained in W. WOLOG assume that
W is not contained in U. Then U N W is a proper subspace of W, so by
Theorem 1.11 (book) dim(U N W) < dim(W). Since dim(W') = 1, the only
possibility is that dim(UNW) = 0 which means that UNW = {0}. Also note
that dim(U) +dim(W) = 1+ 1 = 2 = dim(V'). Hence, by Problem 2.4(c) we
conclude that V- =U & W, so W is a complement of U.

e).
C

Problem 3.1 For each of the following maps T" do the following: Prove
that 7" is linear and find a basis for Ker(7") and Im(7").

(a) T: Fs(R) — P5(R) given by T'(f(x)) = f'(x)

(b) T : Ps(Z3) — Ps(Z3) given by T(f(x)) = f'(x) (where as before Zj is
the field of congruence classes mod 3).

(c) T : P3s(R) — R given by T'(f(z)) = f(2), that is, T" is the evaluation
map at r = 2.

(d) T : P3(R) — Py(R) given by T(f(z)) = (z + 1)p(x), that is, T" is the
multiplication by = + 1.

Answer:
(a) Ker(T) has basis {1} and Im(T') has basis {1,z, 2% 23, 2%, 2°}.
(b) Ker(T) has basis {1, 23, 2°} and Im(7") has basis {1, z, 23, 2*}.

(c) Ker(T) has basis {x — 2, (z — 2)?, (x — 2)3} and Im(T) has basis {1}.



(d) Ker(T') = {0}, so has the empty set () as its only basis and Im(7") has
basis {(x + 1), z(z + 1), 2%(x + 1), 23(z + 1)}.

Of course, the choice of basis is not unique, and in the case of Ker(7') in
(c¢) and Im(7") in (d) there is no particularly natural choice of for a basis.
Justifitcaiton for (c) First note that Im(7") = R since for any a € R there
exists f(xz) € P3(R) sit. f(2) = « (e.g. the constant polynomial f(z) =
a). So, dim(Im(7")) = 1, and by the rank-nullity theorem dim(Ker(7)) =
dim(P5(R)) — dim(Im(7)) =4 — 1 = 3.

The polynomials x — 2, (z —2)?, (z —2)? vanish at 2, so they lie in Ker(T).
They are also linearly independent (e.g. by HW#1.7 since they have distinct
degrees), and since there are 3 = dim(Ker(7')) of them, they must form a
basis.

Problem 3.6: Let V be a vector space and T : V' — V a linear map. A
subspace W of V' is called T-invariant if T(W) C W where T(W) = {T(w) :
we Wh.

(a) Prove that Ker(7T) and Im(7T) are T-invariant subspaces

(b) Assume that dim(V) < oo and W is a T-invariant subspace of V' s.t.
V = W @ Ker(T). Prove that W = Im(7). Hint: First show that
Im(T) C W.

(c) Give an example with dim(V') < oo where the sum Im(7") + Ker(7) is
NOT direct.

(d) Use (b) and (c) to conclude that a T-invariant subspace may NOT have
a T-invariant complement.

Solution: (a) We know that 0 € Ker(7"). Hence for any v € Ker(T') we
have T'(v) = 0 € Ker(7'), so Ker(T') is T-invariant. Now take any w € Im(T").
Since Im(7") C V, we have T'(w) € T(Im(7T")) C T'(V) = Im(7T), so Im(T) is
T'-invariant.

(b) done in class on September 29th

(c) Take any n > 1 and consider T : P,(R) — P,(R) given by T'(f(z)) =
f'(x). Then any nonzero constant polynomial lies in both Ker(7T") and Im(7),
so Ker(T)NIm(T") # {0} and thus the sum Ker(7") 4+ Im(7") cannot be direct.

(d) Let us take any map T : V' — W where the sum Ker(T) + Im(T) is
not direct (e.g. take the above map from (c)). We know that Ker(7') is T-
invariant. Suppose that Ker(7") has a T-invariant complement, that is, there
is a T-invariant subspace W s.t. V = Ker(T) @ W. Then by (b) W = Im(T).
This contradicts the assumption that the sum Ker(7") + Im(7") is not direct.
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Problem 3.7: Recall that sl,,(F) denotes the space of all n x n matrices
over I’ with trace 0. In Problem 2 of HW#6 it was proved that dim(sl,,(F)) =
n? — 1 after a considerable amount of work. Now give a short proof of this
fact by applying the rank-nullity theorem to a suitable linear map.

Solution: Let Mat,(F) be the vector space of all n X n matrices over
F, and consider the map 7" : Mat,(F) — F given by T'(A) = tr(A). Then
Ker(T) = sl,,(F) (by definition) and Im(7") = F since any a € F' is the trace
of some A € Mat,(F) (e.g. a = tr(aeyr)). So, dim(Im(7")) = 1 and by the
rank-nullity theorem dim(Ker(7)) = dim(Mat,,(F)) — dim(Im(T)) = n? — 1.

Problem 4.3: Let V be a finite-dimensional vector space and k& <
dim(V') a positive integer. Let T': V' — V be a linear transformation. Prove
that the following are equivalent:

(a) There exists a T-invariant subspace W of V' with dim(W) = k (recall
that the notion of a T-invariant subspace is defined in Problem#6 of
Homework#3).

(b) There exists a basis B of V' s.t. the matrix [T]g has the block-diagonal

form
Akzxk ka(nfk)
Otn—tyxk  Cln—k)x (n—k)-

where subscrpits indicate matrix sizes and Og,—g)xk is the (n — k) x k
zero matrix.

Solution: “(b)= (a)” Suppose that B = {vy,...,v,} and [T = (ai;)1<ij<n-
By definition of [Tz we have T'(v;) = > a;v; for all 1 < j < n. On

the other hand, the assumption about the block-diagonal form of [T]z from

(b) implies that a;; =0 for k+1 <4 <nand 1 < j < k. This means that

k
T(vy) = Zaijvi forall 1 <j <k (%)
i=1

Let W = Span(vy,ve,...,vx); note that dim(W) = k since {vq,..., v} is
linearly independent, being a subset of a basis of V. By (***) T'(v;) € W for
all 1 < j <k, and since T is linear (and W is a subspace), we conclude that
T(w) € W for all w € Span(vy,vy,...,vx) = W. So, T(W) C W, and thus

W is a T-invariant subspace with dim(WW) = k.
“(a)= (b)” Choose an ordered basis {v,...,v;} of W and extend it to
an ordered basis {vy,...,v,} of V; call the latter basis B. Since W is T-
invariant, for each 1 < j < k we have T'(v;) € W, so T'(v;) = Zle a;v; =
Zle aijv; + > i .1 0 v;. This implies that the (4,7) entry of [T]p is equal
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to 0 whenever 1 < j < k and k+ 1 < i < n, so [T]g has the required
block-diagonal form.

Problem 4.5: Let V be a finite-dimensional vector space and T : V — V
a linear map. Prove that the following are equivalent:

(i) T is a projection, that is, " = pyw for some U and W with U@ W =V
(ntte that pyw is defined in Problem 4.4).

(i) 7% =T (where T?> =T - T is the composition of T" with itself)

(iii) There is an ordered basis § of V s.t. [Tz = e11 + ... + exx for some
k < dimV, that is, [T]s is the diagonal matrix whose first k£ diagonal
entries are equal to 1 and the remaining diagonal entries are equal to

0.

Solution: We'll prove that (i)=-(iil)=-(ii)=(i).

“(i)=-(iii)”: choose some ordered bases {u1, ..., ur} of U and {wy,...,w;}
of W. We claim that their ordered union 5 = {uy,...,ug, wy,... w;} (with
elements of W listed first) is a basis of V' — this is not hard to prove directly,
but we can also deduce it from previous homework problems. Indeed, by
Problem 2.1(d) Span(3) = Span({uy,...,ux}) + Span({wy,...,w}) =U +
W, so 8 spans U + W = V. Since V.= U & W (the sum is direct), by
Problem 2.4, dim(V') = dim(U) + dim(W) = k+1 = ||, so [ is a basis of V
by Corollary 3.5(d).

Since T' = pyw, we have T'(u;) = u; for 1 < j < k and T'(w;) = 0 for
1 < j <1. We conclude that [Tz has 1 as its (j,7)-entry forall 1 < j <k
and all other entires are 0. Therefore, [T]g = e11 + ... + ex-

“(ill)=-(i1)”: Since [T]s = e11 + ... + ek, by direct computation we have
([T)5)* = [T5]. On the other hand, by Theorem 2.14(book) ([T]s)* = [T?]s.
So, [T?)s = [T, and since a linear map is uniquely determined by its matrix
with respect to a given a basis, we conclude that 7% = T.

“(ii)=(1)”: Assume that T? = T. We claim that

V = Ker(T) & Im(T).

Take any v € Ker(T) N Im(7T"). Then T'(v) = 0 and v = T'(u) for some wu,
sov="T(u)=T*u) =T(T(u)) =T(v) = 0. Hence Ker(T) NIm(7T) = {0}.
On the other hand, by the rank-nullity theorem dim(Ker(7'))+dim(Im(7")) =
dim (V). Combining the two results, we conclude that V = Ker(T) & Im(7)
by Problem 2.4(c). (It is also not hard to show directly that V' = Ker(T') +
Im(7T"): indeed, any v € V can be written as v = (v — T'(v)) + T'(v) and
v—"T(v) € Ker(T) for T(v —T(v)) =T(v) — T*v) = 0).
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Now let U = Im(T") and W = Ker(T"). Then T'(w) = 0 for all w € W and
T(u) = u for all w € U (for any u € U can be written as u = T'(z) for some
zand T'(u) =T(T(z)) = T'(2) = u). Therefore, T' = pyw by definition.

Problem 5.6: Prove Proposition 10.4: Let V' be a finite-dimensional
vector space and W a subspace of V. Then

dim(W) + dim(Ann(W)) = dim(V).

See Problem 14 in § 2.6 for a hint.
Solution: Let n = dim V' and m = dim W. Following the hint in the book,

choose a basis {vy, . .., v, } of W and extend it to a basis {v1, ..., U, Umi1, .-, Un}
of V. Let {v},...,v%} be the dual basis of V*, and let

B=A{vy, 1,...,0.}

Let us show that B is a basis of Ann(W) (this would imply that dim(Ann(W)) =
n—m=dimV —dim W, as desired).

Note that B is linearly independent (being a subset of a basis of V*), so
we only need to check that Ann(W) = Span(B).

Part 1: Span(B) C Ann(W). First take any element of B, that is, v
with m+1 < i <n. Then v} (v;) =0 for all 1 < j <m (by definition of dual
basis), and by linearity v;(Ajv; + ...+ Apv,) =0 forall Ay, ..., A, € F. So,
vi(w) =0 for all w € Span(vy,...,v,) =W, so v € Ann(W).

Thus, we proved that B C Ann(W), and since Ann (W) is a subspace (by
Problem 5.5), it follows that Span(B) C Ann(WW).

Part 2: Ann(W) C Span(B). Take any f € Ann(W). Since {v],...,v%}
is a basis of V*, we can write

f=Mv] + ...\, for some Ay, ..., A\, € F. (% * x)

Since f € Ann(W), we must have f(v;) = 0 for 1 <4 < m. Fix such ¢ and
evaluate both sides of (***) at v;. Since vi(v;) =0 for k # ¢ and 1 for k = 1,
we get that f(v;) = \; (and recall that f(v;) =0). So, \; =0 for 1 <i <m,
and therefore, f =>" \ivf € Span(B). O

i=m+1



