Homework #4. Due Thursday, September 22nd, in class Reading:

1. For this homework assignment: \S 2.2-2.5.

2. For next week's classes: \S 2.6, 3.1 and 3.2.

HOMEWORK POLICY: The general policy is the same as in Homework#3. In this assignment there are four (4) quiz problems: 2,5,6(a)(b),7. You are allowed to consult with others (following the previously stated rules for QD problems) on (at most) 2 out of 4 problems. The remaining problems should be done individually, and you should indicate on top of your assignment which problems were discussed with others. In problem 5 each implication in the suggested approach counts as one-third of a problem.

Problem 1: Do some standard computational exercises on change of bases at the end of § 2.5 (do as many as you need to get comfortable).

Problem 2: Q Let $V = P_2(\mathbb{R})$ and define the linear map $T: V \to V$ by T(f(x)) = (x+1)f'(x).

- (a) Compute $[T]_{\mathcal{B}}$ for the ordered basis $\mathcal{B} = (1, x, x^2)$.
- (b) Let $\mathcal{B}' = (1, (x+1), (x+1)^2)$. Compute the matrix $Q = [id_V]^{\mathcal{B}}_{\mathcal{B}'}$ which changes \mathcal{B}' -coordinates into \mathcal{B} -coordinates and then use the change of basis formula to compute $[T]_{\mathcal{B}'}$.
- (c) Now compute $[T]_{\mathcal{B}'}$ directly from the definition of T. **Hint:** If an element $f \in P_2(\mathbb{R})$ is given in the standard form $(f = ax^2 + bx + c)$, to compute its \mathcal{B}' -coordinates, let y = x + 1 (so that x = y 1) and then expand f as a polynomial in y.

Problem 3: Let V be a finite-dimensional vector space and $k \leq \dim(V)$ a positive integer. Let $T: V \to V$ be a linear transformation. Prove that the following are equivalent:

(a) There exists a *T*-invariant subspace *W* of *V* with $\dim(W) = k$ (recall that the notion of a *T*-invariant subspace is defined in Problem#6 of Homework#3).

(b) There exists a basis \mathcal{B} of V s.t. the matrix $[T]_{\mathcal{B}}$ has the block-diagonal form

$$\begin{pmatrix} A_{k\times k} & B_{k\times (n-k)} \\ 0_{(n-k)\times k} & C_{(n-k)\times (n-k)} \end{pmatrix}$$

where subscripts indicate matrix sizes and $0_{(n-k)\times k}$ is the $(n-k)\times k$ zero matrix.

Problem 4: Let V be a vector space and U and W subspaces of V s.t. $V = U \oplus W$. Prove that there exists unique linear map $T : V \to V$ s.t. T(u) = u for all $u \in U$ and T(w) = 0 for all $w \in W$. Such map T is called the **projection onto** U **along** W and will be denoted by $p_{U,W}$. By a **projection** we will mean a map $p_{U,W}$ for some U and W as above.

Problem 5: Q Let V be a finite-dimensional vector space and $T: V \to V$ a linear map. Prove that the following are equivalent:

- (i) T is a projection, that is, $T = p_{U,W}$ for some U and W with $U \oplus W = V$.
- (ii) $T^2 = T$ (where $T^2 = T \cdot T$ is the composition of T with itself)
- (iii) There is an ordered basis \mathcal{B} of V s.t. $[T]_{\mathcal{B}} = e_{11} + \ldots + e_{kk}$ for some $k \leq \dim V$, that is, $[T]_{\mathcal{B}}$ is the diagonal matrix whose first k diagonal entries are equal to 1 and the remaining diagonal entries are equal to 0.

Hint: Perhaps the shortest way to prove this is via the cycle "(i) \Rightarrow (iii) \Rightarrow (iii) \Rightarrow (i)". The first two implications are relatively easy. To prove "(ii) \Rightarrow (i)" first show that if $T^2 = T$, then $V = \text{Im}(T) \oplus \text{Ker}(T)$.

Problem 6: Let V and W be vector spaces over the same field and $\mathcal{L}(V, W)$ the vector space of all linear maps from V to W.

(a) **Q** Suppose that W is written as an internal direct sum of its subspaces W_1, \ldots, W_n :

$$W = \bigoplus_{i=1}^{n} W_i.$$

(Recall that direct sums of more than two subspaces were defined in Problem 5 of Homework#4). Let $T_1, \ldots, T_n \in \mathcal{L}(V, W)$ be NONZERO maps such that $\text{Im}(T_i) \subseteq W_i$ for $1 \leq i \leq n$. Prove that T_1, \ldots, T_n are linearly independent (as elements of $\mathcal{L}(V, W)$).

(b) **Q** Now suppose that $V = \bigoplus_{j=1}^{m} V_j$ and let $S_1, \ldots, S_m \in \mathcal{L}(V, W)$ be NONZERO maps such that $S_i(v) = 0$ whenever $v \in V_j$ for $j \neq i$ (equivalently, $V_j \subseteq \text{Ker}(S_i)$ for all $j \neq i$). Prove that S_1, \ldots, S_m are linearly independent. (c) State and prove a theorem which provides a natural generalization for both (a) and (b).

Problem 7: Q Let V be vector space and $T: V \to V$ a linear map.

- (a) Assume that $\dim(V) < \infty$. Prove that T is bijective $\iff T$ is injective $\iff T$ is surjective. **Hint:** Use the rank-nullity theorem.
- (b) Give an example of an infinite-dimensional vector space $T: V \to V$ and linear maps $T_1, T_2: V \to V$ s.t. T_1 is injective but not surjective and T_2 is surjective but not injective.