Homework #11. Due Thursday, December 1st, in class Reading:

- 1. For this homework assignment: § 7.3, 6.8 and parts of 6.1.
- 2. For classes on Nov 29, Dec 1: read $\S 6.8$ and briefly go over 6.1-6.3.

HOMEWORK POLICY: In this homework all quiz problems may be discussed with others (following the previously stated rules for QD problems). Problem 1 Q:

- (a) Prove that there exist NO matrix $A \in Mat_{3\times 3}(\mathbb{Q})$ (where $\mathbb Q$ denotes rationals) s.t. $A^2 = 5I$. **Hint:** Use minimal polynomials.
- (b) Given an example of a matrix $A \in Mat_{3\times 3}(\mathbb{R})$ s.t. $A^2 = 5I$. Then explain where your proof from (a) would break down if $\mathbb Q$ is replaced by R.

Problem 2: Q Let V be a finite-dimensional vector space over a field F , $n = \dim(V)$ and $H \in Bil(V)$. Let β be an ordered basis of V and $A = [H]_{\beta}$. Let $\psi: V \to F^n$ be the isomorphism given by $\psi(v) = [v]_\beta$ (where elements of $Fⁿ$ are thought of as column vectors).

- (a) Prove that $\psi(RKer(H)) = Ker(A)$ (where by definition $Ker(B) =$ $Ker(L_B)$ for a square matrix B).
- (b) Prove that $\psi(\text{LKer}(H)) = \text{Ker}(A^t)$
- (c) Deduce that $\dim(\text{LKer}(H)) = \dim(\text{RKer}(H))$ (this is Proposition 23.1)
- (d) Deduce that H is non-degenerate if and only if A is invertible (this is Proposition 23.2).

Hint for (a) and (b): Recall that $H(v, w) = [v]_{\beta}^{t} A[w]_{\beta}$ for all $v, w \in V$. The expression on the right-hand side can be written as a dot product in two different ways – one is useful for (a) and the other one is useful for (b). Recall that we proved in class that the dot product is non-degenerate.

Definition: Let V be a vector space over a field F , and let H be a symmetric bilinear form on V. A basis β of V is called H-orthogonal if $H(b, b') = 0$

for any distinct elements b, b' of β . If in addition $H(b, b) = 1$ for all $b \in \beta$, then β is called H-orthonormal.

By Theorem 6.36 (which we will prove in class on Tue, Nov 29), for every symmetric bilinear form H there exists an H -orthogonal basis, provided that $char(F) \neq 2.$

Problem 3: Q Let F be a field, $n \in \mathbb{N}$ and $V = Mat_{n \times n}(F)$. Define the function $H: V \times V \to F$ by $H(A, B) = \text{tr}(AB)$.

- (a) Prove that H is a non-degenerate symmetric bilinear form on V .
- (b) Assume that $char(F) \neq 2$. Find an H-orthogonal basis of V.

Hint: Recall that V has a natural basis $\{e_{ij} : 1 \le i, j \le n\}$ where e_{ij} is the matrix whose (i, j) -entry is 1 and all other entries are 0. To prove that H is non-degenerate it suffices to show that there is no nonzero $A \in Mat_{n \times n}(F)$ s.t. $tr(Ae_{ij}) = 0$ for all i, j. Note that

$$
e_{ij}e_{kl} = \delta_{il}e_{jk}
$$
 for all i, j, k, l .

Problem 4: Q Let $A =$ $\sqrt{ }$ $\overline{1}$ 7 2 0 2 6 -2 $0 -2 5$ \setminus $\Big\} \in Mat_{3\times 3}(\mathbb{R}),$ and let H be the bilinear form on \mathbb{R}^3 given by $H(v, w) = v^t A w$.

- (a) Use the algorithm from the proof of Theorem 6.36 to find an Horthogonal basis of V .
- (b) Use (a) to find an invertible matrix Q and a diagonal matrix D s.t. $Q^tAQ = D.$

Problem 5: The goal of this problem is to prove that if $A \in Mat_{n \times n}(\mathbb{R})$ is a symmetric matrix (that is, $A^t = A$), then

- (i) A is diagonalizable (over \mathbb{R})
- (ii) There is an orthogonal matrix Q s.t. the matrix $Q^{-1}AQ$ is diagonal. A matrix Q is called **orthogonal** if Q is invertible and $Q^{-1} = Q^t$.

This theorem is established in \S 6.3, but the proof uses many other results from § 6.1-6.3. This exercise provides a relatively short self-contained proof. Consider the function $\langle \cdot, \cdot \rangle : \mathbb{C}^n \times \mathbb{C}^n \to \mathbb{C}$ given by

$$
\langle (x_1,\ldots,x_n)^t, (y_1,\ldots,y_n)^t \rangle = \sum_{i=1}^n x_i \overline{y_i}
$$

where \overline{y} is the complex conjugate of y. Note that $\langle \cdot, \cdot \rangle$ restricted to $\mathbb{R}^n \times \mathbb{R}^n$ is the usual dot product.

Also note that $\langle \cdot, \cdot \rangle$ is NOT a bilinear form on \mathbb{C}^n ; it is a sesqui-linear form: it satisfies $\langle u_1 + u_2, v \rangle = \langle u_1, v \rangle + \langle u_2, v \rangle$, $\langle u, v_1 + v_2 \rangle = \langle u, v_1 \rangle + \langle u, v_2 \rangle$ and $\langle \lambda u, v \rangle = \lambda \langle u, v \rangle$; however, $\langle u, \lambda v \rangle$ is equal to $\overline{\lambda} \langle u, v \rangle$, not $\lambda \langle u, v \rangle$.

Finally, note that $\langle \cdot, \cdot \rangle$ is positive definite, that is, $\langle v, v \rangle > 0$ for all $v \neq 0$.

For every matrix $B \in Mat_{n \times n}(\mathbb{C})$ denote by B^* the matrix obtained from B by transposition followed by applying complex conjugation to every entry, that is, if $B = (b_{ij})$, then $B^* = (\overline{b_{ii}})$.

- (a) Prove that $\langle Bu, w \rangle = \langle u, B^*w \rangle$ for all $u, w \in \mathbb{C}^n$ and $B \in Mat_{n \times n}(\mathbb{C})$.
- (b) Q Now assume that $B = B^*$. Prove that every eigenvalue of B is real. **Hint:** If $\lambda \in Spec(B)$, choose $v \in E_{\lambda}(B)$ and apply (a) with $u = w = v$.
- (c) Q Again assume that $B = B^*$. Prove that B is diagonalizable. **Hint:** Suppose not. Since B has JCF over $\mathbb C$ (as $\mathbb C$ is algebraically closed), it may only fail to be diagonalizable if for some $\lambda \in Spec(B)$ there is a Jordan block of size ≥ 2 in $JCF(B)$. In that case there exists $v \in \mathbb{C}^n$ s.t. $(B - \lambda I)v \neq 0$, but $(B - \lambda I)^2v = 0$. Use (a) with B replaced by $B - \lambda I$ and suitable u and w to get a contradiction with the fact that $\langle \cdot, \cdot \rangle$ is positive definite.

In parts (d)-(g) below we assume that $A \in Mat_{n \times n}(\mathbb{R})$ and A is symmetric.

- (d) Deduce from (b) and (c) that A is diagonalizable over $\mathbb R$.
- (e) Q Prove that if λ and μ are distinct eigenvalues of A, then for any $u \in$ $E_{\lambda}(A)$ and $w \in E_{\mu}(A)$ we have $\langle u, w \rangle = 0$.
	- (f) Use (e) to prove that \mathbb{R}^n has an orthonormal (with respect to the dot product) basis consisting of eigenvectors of A.
- (g) Q Prove that a matrix $Q \in Mat_{n \times n}(\mathbb{R})$ is orthogonal \iff the columns of Q form an orthonormal basis of \mathbb{R}^n . Deduce that there is an orthogonal matrix Q s.t. $Q^{-1}AQ$ is diagonal. (Note that $Q^{-1}AQ = Q^tAQ$ since Q is orthogonal).

Problem 6: Q Let A be as in Problem 4. Find an orthogonal matrix Q and a diagonal matrix D s.t. $Q^t A Q = D$ (such Q and D exist by Problem 5). **Hint:** If you do not see how to start, read Problem $5(e), (f), (g)$ carefully.