
Homework #11. Due Thursday, December 1st, in class

Reading:

1. For this homework assignment: § 7.3, 6.8 and parts of 6.1.

2. For classes on Nov 29, Dec 1: read § 6.8 and briefly go over 6.1-6.3.

HOMEWORK POLICY: In this homework all quiz problems may be

discussed with others (following the previously stated rules for QD problems).

Problem 1 Q:

(a) Prove that there exist NO matrix A ∈ Mat3×3(Q) (where Q denotes

rationals) s.t. A2 = 5I. Hint: Use minimal polynomials.

(b) Given an example of a matrix A ∈ Mat3×3(R) s.t. A2 = 5I. Then

explain where your proof from (a) would break down if Q is replaced

by R.

Problem 2: Q Let V be a finite-dimensional vector space over a field F ,

n = dim(V ) and H ∈ Bil(V ). Let β be an ordered basis of V and A = [H]β.

Let ψ : V → F n be the isomorphism given by ψ(v) = [v]β (where elements

of F n are thought of as column vectors).

(a) Prove that ψ(RKer(H)) = Ker(A) (where by definition Ker(B) =

Ker(LB) for a square matrix B).

(b) Prove that ψ(LKer(H)) = Ker(At)

(c) Deduce that dim(LKer(H)) = dim(RKer(H)) (this is Proposition 23.1)

(d) Deduce that H is non-degenerate if and only if A is invertible (this is

Proposition 23.2).

Hint for (a) and (b): Recall that H(v, w) = [v]tβA[w]β for all v, w ∈ V .

The expression on the right-hand side can be written as a dot product in

two different ways – one is useful for (a) and the other one is useful for (b).

Recall that we proved in class that the dot product is non-degenerate.

Definition: Let V be a vector space over a field F , and let H be a symmetric

bilinear form on V . A basis β of V is called H-orthogonal if H(b, b′) = 0
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for any distinct elements b, b′ of β. If in addition H(b, b) = 1 for all b ∈ β,

then β is called H-orthonormal.

By Theorem 6.36 (which we will prove in class on Tue, Nov 29), for every

symmetric bilinear form H there exists an H-orthogonal basis, provided that

char(F ) 6= 2.

Problem 3: Q Let F be a field, n ∈ N and V = Matn×n(F ). Define the

function H : V × V → F by H(A,B) = tr(AB).

(a) Prove that H is a non-degenerate symmetric bilinear form on V .

(b) Assume that char(F ) 6= 2. Find an H-orthogonal basis of V .

Hint: Recall that V has a natural basis {eij : 1 ≤ i, j ≤ n} where eij is the

matrix whose (i, j)-entry is 1 and all other entries are 0. To prove that H is

non-degenerate it suffices to show that there is no nonzero A ∈ Matn×n(F )

s.t. tr(Aeij) = 0 for all i, j. Note that

eijekl = δilejk for all i, j, k, l.

Problem 4: Q Let A =

7 2 0
2 6 −2
0 −2 5

 ∈ Mat3×3(R), and let H be the

bilinear form on R3 given by H(v, w) = vtAw.

(a) Use the algorithm from the proof of Theorem 6.36 to find an H-

orthogonal basis of V .

(b) Use (a) to find an invertible matrix Q and a diagonal matrix D s.t.

QtAQ = D.

Problem 5: The goal of this problem is to prove that if A ∈ Matn×n(R) is

a symmetric matrix (that is, At = A), then

(i) A is diagonalizable (over R)

(ii) There is an orthogonal matrix Q s.t. the matrix Q−1AQ is diagonal.

A matrix Q is called orthogonal if Q is invertible and Q−1 = Qt.

This theorem is established in § 6.3, but the proof uses many other results

from § 6.1-6.3. This exercise provides a relatively short self-contained proof.

Consider the function 〈·, ·〉 : Cn × Cn → C given by

〈(x1, . . . , xn)t, (y1, . . . , yn)t〉 =
n∑
i=1

xiyi
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where y is the complex conjugate of y. Note that 〈·, ·〉 restricted to Rn ×Rn

is the usual dot product.

Also note that 〈·, ·〉 is NOT a bilinear form on Cn; it is a sesqui-linear form:

it satisfies 〈u1 + u2, v〉 = 〈u1, v〉 + 〈u2, v〉, 〈u, v1 + v2〉 = 〈u, v1〉 + 〈u, v2〉 and

〈λu, v〉 = λ〈u, v〉; however, 〈u, λv〉 is equal to λ〈u, v〉, not λ〈u, v〉.
Finally, note that 〈·, ·〉 is positive definite, that is, 〈v, v〉 > 0 for all v 6= 0.

For every matrix B ∈ Matn×n(C) denote by B∗ the matrix obtained from

B by transposition followed by applying complex conjugation to every entry,

that is, if B = (bij), then B∗ = (bji).

(a) Prove that 〈Bu,w〉 = 〈u,B∗w〉 for all u,w ∈ Cn and B ∈Matn×n(C).

(b) Q Now assume that B = B∗. Prove that every eigenvalue of B is real.

Hint: If λ ∈ Spec(B), choose v ∈ Eλ(B) and apply (a) with u = w = v.

(c) Q Again assume that B = B∗. Prove that B is diagonalizable. Hint:

Suppose not. Since B has JCF over C (as C is algebraically closed), it

may only fail to be diagonalizable if for some λ ∈ Spec(B) there is a

Jordan block of size ≥ 2 in JCF (B). In that case there exists v ∈ Cn

s.t. (B − λI)v 6= 0, but (B − λI)2v = 0. Use (a) with B replaced by

B − λI and suitable u and w to get a contradiction with the fact that

〈·, ·〉 is positive definite.

In parts (d)-(g) below we assume that A ∈Matn×n(R) and A is symmetric.

(d) Deduce from (b) and (c) that A is diagonalizable over R.

(e) Q Prove that if λ and µ are distinct eigenvalues of A, then for any u ∈
Eλ(A) and w ∈ Eµ(A) we have 〈u,w〉 = 0.

(f) Use (e) to prove that Rn has an orthonormal (with respect to the dot

product) basis consisting of eigenvectors of A.

(g) Q Prove that a matrix Q ∈Matn×n(R) is orthogonal ⇐⇒ the columns of

Q form an orthonormal basis of Rn. Deduce that there is an orthogonal

matrix Q s.t. Q−1AQ is diagonal. (Note that Q−1AQ = QtAQ since

Q is orthogonal).

Problem 6: Q Let A be as in Problem 4. Find an orthogonal matrix Q and

a diagonal matrix D s.t. QtAQ = D (such Q and D exist by Problem 5).

Hint: If you do not see how to start, read Problem 5(e),(f),(g) carefully.
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