Homework #11. Due Thursday, December 1st, in class
Reading:
1. For this homework assignment: § 7.3, 6.8 and parts of 6.1.
2. For classes on Nov 29, Dec 1: read § 6.8 and briefly go over 6.1-6.3.

HOMEWORK POLICY: In this homework all quiz problems may be
discussed with others (following the previously stated rules for QD problems).

Problem 1 Q:

(a) Prove that there exist NO matrix A € Matsy3(Q) (where Q denotes
rationals) s.t. A? = 5I. Hint: Use minimal polynomials.

(b) Given an example of a matrix A € Matzy3(R) s.t. A? = 5I. Then
explain where your proof from (a) would break down if Q is replaced

by R.

Problem 2: Q Let V be a finite-dimensional vector space over a field F,
n=dim(V) and H € Bil(V). Let  be an ordered basis of V and A = [H].
Let ¢ : V' — F" be the isomorphism given by ¢(v) = [v]g (where elements
of F™ are thought of as column vectors).

(a) Prove that ¢(RKer(H)) = Ker(A) (where by definition Ker(B) =
Ker(Lp) for a square matrix B).

(b) Prove that ¢(LKer(H)) = Ker(A")
(c¢) Deduce that dim(LKer(H)) = dim(RKer(H)) (this is Proposition 23.1)

(d) Deduce that H is non-degenerate if and only if A is invertible (this is
Proposition 23.2).

Hint for (a) and (b): Recall that H(v,w) = [v]A[w]g for all v,w € V.
The expression on the right-hand side can be written as a dot product in
two different ways — one is useful for (a) and the other one is useful for (b).
Recall that we proved in class that the dot product is non-degenerate.

Definition: Let V' be a vector space over a field F', and let H be a symmetric
bilinear form on V. A basis § of V is called H-orthogonal if H(b,0’) = 0



for any distinct elements b, of 5. If in addition H(b,b) = 1 for all b € 3,
then (3 is called H-orthonormal.

By Theorem 6.36 (which we will prove in class on Tue, Nov 29), for every
symmetric bilinear form H there exists an H-orthogonal basis, provided that
char(F) # 2.

Problem 3: Q Let F be a field, n € N and V = Mat,«x,(F). Define the
function H : V. xV — F by H(A, B) = tr(AB).

(a) Prove that H is a non-degenerate symmetric bilinear form on V.
(b) Assume that char(F') # 2. Find an H-orthogonal basis of V.

Hint: Recall that V has a natural basis {e;; : 1 <4,j < n} where ¢;; is the
matrix whose (i, j)-entry is 1 and all other entries are 0. To prove that H is
non-degenerate it suffices to show that there is no nonzero A € Mat,x,(F)
s.t. tr(Ae;;) =0 for all 4, j. Note that

eijer = Oyejx, for all ¢, 7, k, (.
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bilinear form on R? given by H(v,w) = v Aw.
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Problem 4: Q Let A = |2

(a) Use the algorithm from the proof of Theorem 6.36 to find an H-
orthogonal basis of V.

(b) Use (a) to find an invertible matrix ) and a diagonal matrix D s.t.

Q'AQ = D.

Problem 5: The goal of this problem is to prove that if A € Mat,«,(R) is
a symmetric matrix (that is, A* = A), then

(i) A is diagonalizable (over R)

(ii) There is an orthogonal matrix @Q s.t. the matrix Q *AQ is diagonal.
A matrix @ is called orthogonal if @ is invertible and Q! = Q*.

This theorem is established in § 6.3, but the proof uses many other results
from § 6.1-6.3. This exercise provides a relatively short self-contained proof.
Consider the function (-, ) : C* x C* — C given by

(@1 sa)s o)) = 2
=1



where 7 is the complex conjugate of y. Note that (-, ) restricted to R™ x R”
is the usual dot product.

Also note that (-,-) is NOT a bilinear form on C"; it is a sesqui-linear form:
it satisfies (u; + ug2,v) = (uy,v) + (u2,v), (u, vy + v2) = (u,v1) + (u,v9) and
(Au, v) = A(u,v); however, (u, \v) is equal to A{u,v), not A(u,v).

Finally, note that (-,-) is positive definite, that is, (v,v) > 0 for all v # 0.
For every matrix B € Mat,x,(C) denote by B* the matrix obtained from

B by transposition followed by applying complex conjugation to every entry,
that is, if B = (b;;), then B* = (b;).

(a) Prove that (Bu,w) = (u, B*w) for all u,w € C" and B € Mat,x,(C).

(b) Q Now assume that B = B*. Prove that every eigenvalue of B is real.
Hint: If A\ € Spec(B), choose v € E)\(B) and apply (a) withu = w = v.

(c) Q Again assume that B = B*. Prove that B is diagonalizable. Hint:
Suppose not. Since B has JCF over C (as C is algebraically closed), it
may only fail to be diagonalizable if for some A € Spec(B) there is a
Jordan block of size > 2 in JCF(B). In that case there exists v € C"
s.t. (B—=A)v # 0, but (B — X)?>v = 0. Use (a) with B replaced by
B — \I and suitable u and w to get a contradiction with the fact that
(-, ) is positive definite.

In parts (d)-(g) below we assume that A € Mat,«,(R) and A is symmetric.
(d) Deduce from (b) and (c) that A is diagonalizable over R.

(e) Q Prove that if A and p are distinct eigenvalues of A, then for any u €
E\(A) and w € E,(A) we have (u,w) = 0.

(f) Use (e) to prove that R™ has an orthonormal (with respect to the dot
product) basis consisting of eigenvectors of A.

(g) Q Prove that a matrix Q € Mat,x,(R) is orthogonal <= the columns of
@ form an orthonormal basis of R™. Deduce that there is an orthogonal
matrix @ s.t. Q7 1AQ is diagonal. (Note that Q71AQ = Q'AQ since
@ is orthogonal).

Problem 6: Q Let A be as in Problem 4. Find an orthogonal matrix () and
a diagonal matrix D s.t. Q'AQ = D (such Q and D exist by Problem 5).
Hint: If you do not see how to start, read Problem 5(e),(f),(g) carefully.



