
Homework #10. Due Thursday, November 17th, in class

Reading:

1. For this homework assignment: § 7.2, 7.3.

2. For next week’s classes: read § 6.8.

HOMEWORK POLICY: In this homework all quiz problems may be

discussed with others (following the previously stated rules for QD problems).

Problem 1: Let F be a field and A1, . . . , Ak square matrices over F (possibly

of different sizes). Recall that by A1⊕ . . .⊕Ak we denote the block-diagonal

matrix whose diagonal blocks are A1, . . . , Ak (in this order). Let A = A1 ⊕
. . .⊕ Ak. Prove that

(a) p(A) = p(A1)⊕ . . .⊕ p(Ak) for any polynomial p(x) ∈ P(F )

(b) rk(A) = rk(A1)⊕ . . .⊕ rk(Ak)

Problem 2: Q Let A be a square matrix over a field F , and assume that

χA(x) splits. For each λ ∈ Spec(A) and n ∈ N denote by f(n, λ) the num-

ber of Jordan blocks of size n corresponding to λ in JCF (A). Note that

computing JCF (A) is the same as computing the numbers f(n, λ) for all

λ ∈ Spec(A) and n ∈ N. In Lecture 20 we proved that

f(n, λ) = rk((A− λI)n−1)− 2rk((A− λI)n) + rk((A− λI)n+1). (∗ ∗ ∗)

In § 7.2 it is explained how to compute JCF(A) using the notion of dot

diagram, and by Theorem 7.10(b) in the book the dot diagrams of A can

be computed in terms of the quantities rk((A − λI)n) for λ ∈ Spec(A) and

n ∈ N. Deduce formula (***) directly from Theorem 7.10. Hint: First

reformulate the definition of a dot diagram in terms of sizes of Jordan blocks

of A.

Problem 3: Q Problem 2 after § 7.2 on page 510.

Problem 4: Let F be a field and let A ∈Matn×n(F ) be nilpotent.

(a) Prove that χA(x) splits and all blocks in JCF (A) correspond to 0.

Note: This fact was established in the course of our proof of the exis-

tence of JCF, but it is also useful to see how to obtain this fact using

the existence of JCF (since the latter can be proved in many different

ways). One can also give an argument using minimal polynomials.
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(b)Q Now assume in addition that rk(A) = n−1. Use dot diagrams to prove

that JCF (A) = J(0, n) – a single Jordan block of size n corresponding

to 0. Note: The use of dot diagrams is by no means necessary, but

they provide a particularly elegant argument. Hint: How many dots

are there in the first line?

Problem 5: Q Let F be a field, λ ∈ F , n ∈ N and A = J(λ, n)2. Use the

above techniques to determine JCF (A). Hint: The answer will depend on

whether λ 6= 0 or not. In order to compute J(λ, n)k for k ∈ N it may be

convenient to write J(λ, n) = λI + J(0, n) and use the binomial formula.

Problem 6: Let A ∈Matn×n(F ) and assume that χA(x) splits. Prove that

A is similar to its transpose At. Hint: Use JCF.

Note: The assumption that χA(x) splits is not necessary, but one needs

a different technique to remove it (one way to do it is using the notion of

rational canonical form discussed in § 7.4).

Problem 7: Let A ∈ Matn×n(F ) and assume that χA(x) splits. Suppose

that Spec(A) = {λ1, . . . , λk}, and let µi be the maximum size of a Jordan

block corresponding to λi in JCF (A). In Lecture 21 we outlined a proof of

the following formula for the minimal polynomial µA(x) of A:

µA(x) =
k∏
i=1

(x− λi)µi .

The purpose of this problem is to provide the details of that proof that were

left out in class:

(a) Prove that if B,C are similar matrices, then µB(x) = µC(x).

(b) Q Suppose thatA = ⊕ki=1Ai. Prove that µA(x) = LCM(µA1(x), . . . , µAk
(x))

where by definition LCM(f1(x), . . . , fk(x)) is the monic polynomial of

the smallest possible degree which is divisible by each fi(x).

Problem 8: Let F be an algebraically closed field.

(a) Let A,B be 2 × 2 matrices over F , and suppose that µA(x) = µB(x)

and χA(x) = χB(x), that is, A and B have the same minimal polyno-

mial and the same characteristic polynomial. Prove that A and B are

similar. Hint: Show that JCF (A) is completely determined by χA(x)

and µA(x) (when A is 2× 2).

(b) Q Prove that the assertion of (a) remains true for n = 3.

(c) Q Give an example showing that the assertion of (a) may be false for

n = 4.

2


