Homework #1. Due Thursday, September 1st, in class

Important reminder: Only problems (or their parts) marked with the \mathbf{Q} (quiz) symbol need to be sumitted in writing. You are NOT allowed to discuss those " \mathbf{Q} questions" with others or use any resources (including web) except for the book and your class noted. ALL assertions must be proved unless explicitly stated otherwise.

Reading:

 For this homework assignment: Sections 1.1 - 1.6 and Appendix on fields.
Before the class on Tue, Aug 30th: Section 1.6. Before the class on Thu, Sep 1st: Section 1.7.

Problems:

Problem 1: Let F be a field, $n \ge 1$ and $Mat_n(F)$ the set of all $n \times n$ matrices with entries in F. Given $A = (a_{ij}) \in Mat_n(F)$, the trace of A, denoted by tr(A), is the sum of all diagonal entries of A:

$$\operatorname{tr}(A) = \sum_{i=1}^{n} a_{ii}.$$

- (a) Prove that $\operatorname{tr}(\lambda A + \mu B) = \lambda \operatorname{tr}(A) + \mu \operatorname{tr}(B)$ for all $A, B \in Mat_n(F)$ and $\lambda, \mu \in F$.
- $\mathbf{Q}(b)$ Let $\mathfrak{sl}_n(F) = \{A \in Mat_n(F) : \operatorname{tr}(A) = 0\}$. Prove that $\mathfrak{sl}_n(F)$ is a subspace of $Mat_n(F)$ (where $Mat_n(F)$ is considered as a vector space over F with respect to the usual matrix addition and scalar multiplication).

Problem 2: Let V be a vector space over a field F. Let W_1 and W_2 be subspaces of V and S_1 and S_2 subsets of V.

- (a) Prove that $W_1 \cup W_2$ is a subspace of V if and only if $W_1 \subseteq W_2$ or $W_2 \subseteq W_1$.
- (b) Prove that $W_1 + W_2$ is a subspace of V, where by definition $W_1 + W_2 = \{w_1 + w_2 : w_1 \in W_1, w_2 \in W_2\}.$
- $\mathbf{Q}(\mathbf{c})$ Prove that $W_1 + W_2$ is the smallest subspace of V containing W_1 and W_2 , that is, if W is any subspace of V containing W_1 and W_2 , then W contains $W_1 + W_2$.

 $\mathbf{Q}(d)$ Prove that $Span(S_1 \cup S_2) = Span(S_1) + Span(S_2)$ in two different ways: first directly from definition of the span and then by using the characterization of spans in Theorem 2.1(b) from Lecture 2 (= Theorem 1.5(b) from the book) and part (c) of this problem.

Problem 3: Let $V = \mathbb{C}$ (complex numbers). Similarly to a discussion in Lecture 1, we can consider V as a vector space over itself $(F = \mathbb{C})$, over reals $(F = \mathbb{R})$ or over rationals $(F = \mathbb{Q})$. Thus, we have three different notions of a subspace of V – to distinguish between them we will use the terms \mathbb{C} -subspace, \mathbb{R} -subspace and \mathbb{Q} -subspace.

- (a) Prove that the only \mathbb{C} -subspaces of V are V itself and $\{0\}$.
- $\mathbf{Q}(\mathbf{b})$ Describe all \mathbb{R} -subspaces of V (and prove that there are no other subspaces). You may use any results from the book in Sections 1.1-1.6, but state your references clearly.
 - (c) For every $n \in \mathbb{Z}_{\geq 0}$ construct an explicit example of a \mathbb{Q} -subspace W_n which has dimension n (as a vector space over \mathbb{Q}). If you did not take 5652, it may not be easy to prove formally that your W_n has dimension n.

Problem 4: Let V be a vector space over a field F and $S = \{v_1, v_2\}$ a subset of V containing precisely two elements. Prove that S is linearly dependent $\iff v_1$ is a scalar multiple of v_2 or v_2 is a scalar multiple of v_1 . (Recall that w is a scalar multiple of v if $w = \lambda v$ for some $\lambda \in F$).

Problem 5: Recall that for an integer $m \ge 2$ we denote by \mathbb{Z}_m the ring of congruence classes mod m and that \mathbb{Z}_m is a field $\iff m$ is a prime.

- (a) Let p be a prime, $n \ge 1$ an integer, and let $V = \mathbb{Z}_p^n$, the standard *n*-dimensional vector space over \mathbb{Z}_p . How many elements does V have?
- (b) Find all ordered bases for Z₂². How many unordered bases does it have? (An unordered basis is a basis in the usual sense; an ordered basis is a basis with a chosen order on its elements).
- (c) Now let p be any prime. How many ordered bases does \mathbb{Z}_p^2 have? **Hint:** Use Problem 4.

Problem 6: Let S be a linearly dependent subset of a vector space V. Prove that some finite subset of S is linearly dependent.

Problem 7: Q Let F be a field and $\mathcal{P}(F)$ the vector space of all polynomials with coefficients in F. Let S be a subset (possibly infinite) of $\mathcal{P}(F)$ such that $0 \notin S$ and any two elements of S have distinct degrees. Prove that S is linearly independent.