Homework #8. Due Thursday, November 6th, in class Reading:

1. For this homework assignment: Chapter $7 +$ class notes (Lectures 14-18)

2. For next week's classes: Section 7.7 (Stone-Weierstrass Theorem).

Problems:

1. Let $a, b \in \mathbb{R}$ with $a < b$, and let $\{f_n\}$ be a sequence of differentiable functions from [a, b] to R. Suppose that both the sequences $\{f_n\}$ and $\{f'_n\}$ are uniformly bounded. Prove that $\{f_n\}$ has a subsequence which converges uniformly on $[a, b]$.

2. Let X be a compact metric space, $(C(X), d_{\infty})$ the space of continuous functions from X to R with uniform metric d_{∞} (given by $d_{\infty}(f,g) =$ $\max_{x \in X} |f(x) - g(x)|$). Prove that a subset F of $C(X)$ is compact (with respect to d_{∞} \iff F satisfies the following three conditions:

- (i) F is uniformly closed, that is, F is closed with respect to d_{∞}
- (ii) F is uniformly bounded
- (iii) $\mathcal F$ is equicontinuous

Hint: For the forward direction, the main thing to prove is that $\mathcal F$ is equicontinuous. Assuming the contrary, show that $\mathcal F$ contains a sequence with no equicontinuous subsequence and then use Theorem 7.24 from Rudin. For the backwards direction combine Arzela-Ascoli Theorem with the fact that $(C(X), d_{\infty})$ is a complete metric space (Theorem 7.15 in Rudin).

3. The goal of this problem is to show that the statement of Arzela-Ascoli Theorem need not hold for sequences of continuous functions from X to $\mathbb R$ if X is not compact.

- (a) Consider functions $f_n : \mathbb{R} \to \mathbb{R}$ given by $f_n(x) = \begin{cases} \frac{|x|}{n} & \text{if } |x| \leq n \\ 1 & \text{if } |x| > n \end{cases}$ 1 if $|x| > n$ Prove that the sequence $\{f_n\}$ is uniformly bounded and equicontinuous, but does not have a uniformly convergent subsequence. Deduce that Arzela-Ascoli Theorem does not hold for $X = \mathbb{R}$.
- (b) (bonus) Now let (X, d) be any unbounded metric space. Show that there exists a sequence of continuous functions $f_n: X \to \mathbb{R}$ which is uniformly bounded and equicontinuous, but does not have a uniformly convergent subsequence. **Hint:** You can construct such a

sequence using functions of the form $f(x) = d(x, a)$ (for a fixed $a \in X$).

4. Problem 7.3:15 from Bergman's supplement (page 79), see

http://math.berkeley.edu/~gbergman/ug.hndts/m104_Rudin_exs.pdf **Hint:** Start by explicitly describing open balls of radius $\lt 1$ in X.

5.

- (a) Prove that the (direct) analogue of Weierstrass Theorem does not hold for $C(\mathbb{R})$, continuous functions from \mathbb{R} to \mathbb{R} : Show that there exists $f \in C(\mathbb{R})$ which cannot be uniformly approximated by polynomials, that is, there is no sequence of polynomials $\{p_n\}$ s.t. $p_n \rightrightarrows f$ on R. Hint: Use the fact that any non-constant polynomial $p(x)$ tends to $\pm\infty$ as $x\to\infty$.
- (b) Now prove that the following (weak) version of Weierstrass Theorem holds for $C(\mathbb{R})$: for any $f \in C(\mathbb{R})$ there exists a sequence of polynomials $\{p_n\}$ s.t. $p_n \rightrightarrows f$ on $[a, b]$ for any closed interval $[a, b]$ (of course, the point is that a single sequence will work for all intervals). Hint: It is enough to do this for intervals of the form $[-k, k]$ for $k \in \mathbb{N}$ (why?). To construct a sequence of polynomials $\{p_n\}$ s.t. $p_n \rightrightarrows f$ on $[-k, k]$ for each k, apply Weierstrass theorem on each interval and then use a diagonal-type argument.

6. Let $a < b$ be real numbers and let $\mathcal{P}_{even}[a, b] \subseteq C[a, b]$ be the set of all even polynomials (that is, polynomials which only involve even powers of x).

- (a) Use Stone-Weierstrass Theorem to prove that $\mathcal{P}_{even}[a, b]$ is dense in $C[a, b] \iff ab \geq 0$ (that is, $0 \leq a < b$ or $a < b \leq 0$).
- (b) (optional) Now prove the " \Leftarrow " direction in (b) using only Weiertrass Theorem (but not Stone-Weierstrass Theorem). Hint: WOLOG assume that $0 \leq a \leq b$. Start by showing that any continuous function in $g \in C[a, b]$ can be written as $g(x) = h(x^2)$ for some continuous function $h \in C[a^2, b^2]$.