
Homework #8. Due Thursday, November 6th, in class

Reading:

1. For this homework assignment: Chapter 7 + class notes (Lectures

14-18)

2. For next week’s classes: Section 7.7 (Stone-Weierstrass Theorem).

Problems:

1. Let a, b ∈ R with a < b, and let {fn} be a sequence of differentiable

functions from [a, b] to R. Suppose that both the sequences {fn} and {f ′
n}

are uniformly bounded. Prove that {fn} has a subsequence which converges

uniformly on [a, b].

2. Let X be a compact metric space, (C(X), d∞) the space of continu-

ous functions from X to R with uniform metric d∞ (given by d∞(f, g) =

maxx∈X |f(x) − g(x)|). Prove that a subset F of C(X) is compact (with

respect to d∞) ⇐⇒ F satisfies the following three conditions:

(i) F is uniformly closed, that is, F is closed with respect to d∞

(ii) F is uniformly bounded

(iii) F is equicontinuous

Hint: For the forward direction, the main thing to prove is that F is

equicontinuous. Assuming the contrary, show that F contains a sequence

with no equicontinuous subsequence and then use Theorem 7.24 from Rudin.

For the backwards direction combine Arzela-Ascoli Theorem with the fact

that (C(X), d∞) is a complete metric space (Theorem 7.15 in Rudin).

3. The goal of this problem is to show that the statement of Arzela-Ascoli

Theorem need not hold for sequences of continuous functions from X to R
if X is not compact.

(a) Consider functions fn : R→ R given by fn(x) =

{ |x|
n if |x| ≤ n

1 if |x| > n
Prove that the sequence {fn} is uniformly bounded and equicontinu-

ous, but does not have a uniformly convergent subsequence. Deduce

that Arzela-Ascoli Theorem does not hold for X = R.

(b) (bonus) Now let (X, d) be any unbounded metric space. Show that

there exists a sequence of continuous functions fn : X → R which

is uniformly bounded and equicontinuous, but does not have a uni-

formly convergent subsequence. Hint: You can construct such a
1



2

sequence using functions of the form f(x) = d(x, a) (for a fixed

a ∈ X).

4. Problem 7.3:15 from Bergman’s supplement (page 79), see

http://math.berkeley.edu/~gbergman/ug.hndts/m104_Rudin_exs.pdf

Hint: Start by explicitly describing open balls of radius < 1 in X.

5.

(a) Prove that the (direct) analogue of Weierstrass Theorem does not

hold for C(R), continuous functions from R to R: Show that there

exists f ∈ C(R) which cannot be uniformly approximated by poly-

nomials, that is, there is no sequence of polynomials {pn} s.t. pn⇒f

on R. Hint: Use the fact that any non-constant polynomial p(x)

tends to ±∞ as x→∞.

(b) Now prove that the following (weak) version of Weierstrass Theorem

holds for C(R): for any f ∈ C(R) there exists a sequence of polyno-

mials {pn} s.t. pn⇒f on [a, b] for any closed interval [a, b] (of course,

the point is that a single sequence will work for all intervals). Hint:

It is enough to do this for intervals of the form [−k, k] for k ∈ N
(why?). To construct a sequence of polynomials {pn} s.t. pn⇒f on

[−k, k] for each k, apply Weierstrass theorem on each interval and

then use a diagonal-type argument.

6. Let a < b be real numbers and let Peven[a, b] ⊆ C[a, b] be the set of

all even polynomials (that is, polynomials which only involve even powers

of x).

(a) Use Stone-Weierstrass Theorem to prove that Peven[a, b] is dense in

C[a, b] ⇐⇒ ab ≥ 0 (that is, 0 ≤ a < b or a < b ≤ 0).

(b) (optional) Now prove the “⇐” direction in (b) using only Weiertrass

Theorem (but not Stone-Weierstrass Theorem). Hint: WOLOG

assume that 0 ≤ a < b. Start by showing that any continuous

function in g ∈ C[a, b] can be written as g(x) = h(x2) for some

continuous function h ∈ C[a2, b2].

http://math.berkeley.edu/~gbergman/ug.hndts/m104_Rudin_exs.pdf

