
Homework #5. Due Thursday, October 2nd, in class

Reading:

1. For this homework assignment: Sections 2.5, 4.1-4.4 + class notes (Lec-

tures 9 and 10)

2. For next week’s classes: Sections 4.4-4.6 (continuity and connectedness,

discontinuities, monotonic functions).

Problems:

1. Complete the proof of Theorem 10.3 started in class. Theorem 10.3

Let (X, dX) and (Y, dY ) be metric spaces, and assume that X is compact.

Then any continuous function f : X → Y is uniformly continuous. Hint:

Suppose that f : X → Y is continuous, but not uniformly continuous. Then,

as we discussed in class, there exist ε > 0 and sequences {an} and {bn} in

X such that dX(an, bn) < 1
n , but dY (f(an), f(bn)) ≥ ε for all n. Since X

is compact, it is sequentially compact, so there exists a subsequence {ank
}

which converges to some a ∈ X. Use the fact that dX(an, bn)→ 0 as n→∞
to deduce that the sequence {bnk

} converges to a as well. Now use Theo-

rem 9.2 (characterization of continuity in terms of convergent sequences) to

reach a contradiction with the assumption that dY (f(an), f(bn)) ≥ ε for all

n.

2. Let X and Y be metric spaces.

(a) Let U be an open subset of X. Let f : X → Y and g : X → Y be

functions such that f(x) = g(x) for all x ∈ U and f is continuous at

every point of U . Prove that g is continuous at every point of U as

well.

(b) Give an example showing that the assertion of (a) may be false if we

do not assume that U is open.

3.

(a) Let X be any set with discrete metric (d(x, y) = 1 if x 6= y and

d(x, y) = 0 if x = y). Prove that for any metric space Y , any

function f : X → Y is continuous.

(b) Use (a) to show that there exist metric spaces X and Y and a

function f : X → Y such that f is continuous and bijective, but

f−1 : Y → X is not continuous (recall that we proved in class that

this cannot happen if X is compact). Hint: You can construct
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an example where X = Y as sets (but with different metrics) and

f : X → Y is the identity function (f(x) = x for all x).

Terminology/Notation. Let A be a set and {Aα} a collection of subsets of

A. We say that A is a disjoint union of {Aα} if A = ∪Aα and Aα∩Aβ = ∅
for any α 6= β. If A is a disjoint union of {Aα}, we write A = tAα.

4. Let X be a metric space. Prove that the following conditions are equiv-

alent:

(i) There exist non-empty closed subsets A and B of X such that X =

A tB (disjoint union of A and B)

(ii) There exist non-empty open subsets A and B of X such that X =

A tB
(iii) There exist non-empty subsets C and D of X such that X = C tD

and in addition C ∩D = D ∩ C = ∅

A metric space X is called disconnected if it satisfies either of these condi-

tions ((iii) is essentially the definition from Rudin, but (i) or (ii) are more

standard). X is called connected if it is not disconnected.

5. Let (X, dX) and (Y, dY ) be metric space, and consider the product space

X × Y with metric d defined in HW#4.1.

(a) Prove that for every x ∈ X, the set {x} × Y = {(x, y) : y ∈ Y }
is closed in X × Y . Similarly, prove that for every y ∈ Y , the set

X × {y} is closed in X × Y .

(b) Prove that the metric spaces Y and {x} × Y (where x is a fixed

element of X) are isometric (see HW#4 for the definition of being

isometric). Deduce that if Y is connected, then {x}×Y is connected.

Likewise, if X is connected, then X × {y} is connected (there is no

need to write down the proof of the latter statement).

(c) Now assume that X and Y are both connected. Prove that X × Y
is also connected. Hint: Assume that X × Y is disconnected, so

X × Y = A t B for some non-empty closed subsets A and B of

X × Y . Prove that for each x ∈ X, the intersection ({x} × Y ) ∩ A
is either {x} × Y or ∅. Similarly, prove that for each y ∈ Y , the

intersection (X × {y}) ∩A is either X × {y} or ∅. Deduce that this

is possible only if A = ∅ or A = X × Y (in which case B = ∅), thus

reaching a contradiction. Hint: Draw a picture in the case where

X = Y = [0, 1] (so that X × Y is a unit square).

(d) Now prove that subsets of R2 of the form (a, b)×(c, d) and [a, b]×[c, d]

are connected.
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6. The goal of this problem is to prove that any open subset of R (with

standard metric) is a disjoint union of countably many open intervals (recall

that by our new convention, countable includes finite).

So, let U be any open subset of R.

(a) Define the relation ∼ on U by setting x ∼ y ⇐⇒ x = y or (x < y

and [x, y] ⊂ U) or (y < x and [y, x] ⊂ U). Prove that ∼ is an

equivalence relation.

(b) Let A be an equivalence class with respect to U . Show that A is an

open interval. Hint: Consider four cases: A is bounded from above

and below; A is bounded from above but not from below etc.. In

the first case show that A = (inf A, supA); in the second case show

that A = (−∞, supA) etc.

(c) Deduce from (b) that U is a disjoint union of intervals. Then prove

that the number of those intervals is countable. Hint: There are

countably many rational numbers.

7. Use Problem 5 to show that the analogue of Problem 6 does not hold in

R2, that is, there exist open subsets of R2 which are not representable as

disjoint unions of open discs (an open disc is an open ball in R2).

8. Let X be any metric space, {xn}n∈N a convergent sequence in X and

x = limn→∞ xn. Prove that the set {xn : n ∈ N} ∪ {x} is compact directly

from the definition of compactness (do not use sequential compactness).


