Homework #5. Due Thursday, October 2nd, in class Reading:

1. For this homework assignment: Sections 2.5, 4.1-4.4 + class notes (Lectures 9 and 10)

2. For next week's classes: Sections 4.4-4.6 (continuity and connectedness, discontinuities, monotonic functions).

Problems:

1. Complete the proof of Theorem 10.3 started in class. Theorem 10.3 Let (X, d_X) and (Y, d_Y) be metric spaces, and assume that X is compact. Then any continuous function $f : X \to Y$ is uniformly continuous. Hint: Suppose that $f : X \to Y$ is continuous, but not uniformly continuous. Then, as we discussed in class, there exist $\varepsilon > 0$ and sequences $\{a_n\}$ and $\{b_n\}$ in X such that $d_X(a_n, b_n) < \frac{1}{n}$, but $d_Y(f(a_n), f(b_n)) \ge \varepsilon$ for all n. Since X is compact, it is sequentially compact, so there exists a subsequence $\{a_{n_k}\}$ which converges to some $a \in X$. Use the fact that $d_X(a_n, b_n) \to 0$ as $n \to \infty$ to deduce that the sequence $\{b_{n_k}\}$ converges to a as well. Now use Theorem 9.2 (characterization of continuity in terms of convergent sequences) to reach a contradiction with the assumption that $d_Y(f(a_n), f(b_n)) \ge \varepsilon$ for all n.

2. Let X and Y be metric spaces.

- (a) Let U be an open subset of X. Let $f : X \to Y$ and $g : X \to Y$ be functions such that f(x) = g(x) for all $x \in U$ and f is continuous at every point of U. Prove that g is continuous at every point of U as well.
- (b) Give an example showing that the assertion of (a) may be false if we do not assume that U is open.

3.

- (a) Let X be any set with discrete metric $(d(x,y) = 1 \text{ if } x \neq y \text{ and } d(x,y) = 0 \text{ if } x = y)$. Prove that for any metric space Y, any function $f: X \to Y$ is continuous.
- (b) Use (a) to show that there exist metric spaces X and Y and a function $f: X \to Y$ such that f is continuous and bijective, but $f^{-1}: Y \to X$ is not continuous (recall that we proved in class that this cannot happen if X is compact). **Hint:** You can construct

an example where X = Y as sets (but with different metrics) and $f: X \to Y$ is the identity function (f(x) = x for all x).

Terminology/Notation. Let A be a set and $\{A_{\alpha}\}$ a collection of subsets of A. We say that A is a **disjoint union** of $\{A_{\alpha}\}$ if $A = \bigcup A_{\alpha}$ and $A_{\alpha} \cap A_{\beta} = \emptyset$ for any $\alpha \neq \beta$. If A is a disjoint union of $\{A_{\alpha}\}$, we write $A = \bigsqcup A_{\alpha}$.

4. Let X be a metric space. Prove that the following conditions are equivalent:

- (i) There exist non-empty closed subsets A and B of X such that $X = A \sqcup B$ (disjoint union of A and B)
- (ii) There exist non-empty open subsets A and B of X such that $X = A \sqcup B$
- (iii) There exist non-empty subsets C and D of X such that $X = C \sqcup D$ and in addition $C \cap \overline{D} = D \cap \overline{C} = \emptyset$

A metric space X is called *disconnected* if it satisfies either of these conditions ((iii) is essentially the definition from Rudin, but (i) or (ii) are more standard). X is called *connected* if it is not disconnected.

5. Let (X, d_X) and (Y, d_Y) be metric space, and consider the product space $X \times Y$ with metric *d* defined in HW#4.1.

- (a) Prove that for every $x \in X$, the set $\{x\} \times Y = \{(x, y) : y \in Y\}$ is closed in $X \times Y$. Similarly, prove that for every $y \in Y$, the set $X \times \{y\}$ is closed in $X \times Y$.
- (b) Prove that the metric spaces Y and {x} × Y (where x is a fixed element of X) are isometric (see HW#4 for the definition of being isometric). Deduce that if Y is connected, then {x} × Y is connected. Likewise, if X is connected, then X × {y} is connected (there is no need to write down the proof of the latter statement).
- (c) Now assume that X and Y are both connected. Prove that X × Y is also connected. Hint: Assume that X × Y is disconnected, so X × Y = A ⊔ B for some non-empty closed subsets A and B of X × Y. Prove that for each x ∈ X, the intersection ({x} × Y) ∩ A is either {x} × Y or Ø. Similarly, prove that for each y ∈ Y, the intersection (X × {y}) ∩ A is either X × {y} or Ø. Deduce that this is possible only if A = Ø or A = X × Y (in which case B = Ø), thus reaching a contradiction. Hint: Draw a picture in the case where X = Y = [0, 1] (so that X × Y is a unit square).
- (d) Now prove that subsets of \mathbb{R}^2 of the form $(a, b) \times (c, d)$ and $[a, b] \times [c, d]$ are connected.

6. The goal of this problem is to prove that any open subset of \mathbb{R} (with standard metric) is a **disjoint** union of countably many open intervals (recall that by our new convention, countable includes finite).

So, let U be any open subset of \mathbb{R} .

- (a) Define the relation \sim on U by setting $x \sim y \iff x = y$ or (x < y)and $[x, y] \subset U$ or (y < x) and $[y, x] \subset U$. Prove that \sim is an equivalence relation.
- (b) Let A be an equivalence class with respect to U. Show that A is an open interval. **Hint:** Consider four cases: A is bounded from above and below; A is bounded from above but not from below etc.. In the first case show that $A = (\inf A, \sup A)$; in the second case show that $A = (-\infty, \sup A)$ etc.
- (c) Deduce from (b) that U is a disjoint union of intervals. Then prove that the number of those intervals is countable. Hint: There are countably many rational numbers.

7. Use Problem 5 to show that the analogue of Problem 6 does not hold in \mathbb{R}^2 , that is, there exist open subsets of \mathbb{R}^2 which are not representable as disjoint unions of open discs (an open disc is an open ball in \mathbb{R}^2).

8. Let X be any metric space, $\{x_n\}_{n\in\mathbb{N}}$ a convergent sequence in X and $x = \lim_{n\to\infty} x_n$. Prove that the set $\{x_n : n \in \mathbb{N}\} \cup \{x\}$ is compact directly from the definition of compactness (do not use sequential compactness).