
Homework #4. Due Thursday, September 25th, in class

Reading:

1. For this homework assignment: Sections 2.4, 2.5 + class notes (Lectures

7 and 8)

2. For next week’s classes: carefully read Theorem 2.40 before Tuesday’s

class. We will prove Theorem 8.3 on Tuesday using essentially the same

argument. Note that Theorem 8.3 is a special case of Theorem 2.40 (with

k = 1); however, the general case of Theorem 2.40 follows from Theorem 8.3

and Problem 1 in this assignment. Also read sections 4.1-4.4 (limits of

functions, continuous functions, continuity and compactness, continuity and

connectedness).

Problems:

1. Let (X1, d1) and (X2, d2) be metric spaces. Let X = X1×X2, and define

the function d : X ×X → R≥0 by

d((x1, x2), (y1, y2)) = d1(x1, y1) + d2(x2, y2).

(a) Prove that (X, d) is a metric space.

(b) Assume that (X1, d1) and (X2, d2) are both sequentially compact.

Prove that (X, d) is also sequentially compact.

Hint for (b): Take any sequence in X – it has the form {(an, bn)} for

some an ∈ X1 and bn ∈ X2. Since X1 is sequentially compact, {an} has a

convergent subsequence {ank
}. Now look at the sequence {bnk

}. Since X2

is sequentially compact, it has a convergent subsequence {bnks
}s∈N. Now

prove that the subsequence {(anks
, bnks

)} of {(an, bn)} converges.

2. Let X be metric space, and let Z ⊂ Y be subsets of X. Prove that Z

is closed as a subset of Y ⇐⇒ Z = Y ∩ K for some closed subset K of

X. Deduce that if Z is closed in X, then Z is closed in Y . Note: The

corresponding result with closed replaced by open is also valid and appears

as Theorem 2.30 in Rudin.

3. Let X be a metric space. Prove that X is compact ⇐⇒ X satisfies the

following property:

Let {Kα} be any collection of closed subsets of X such that for any

finite subcollection Kα1 , . . . ,Kαn , the intersection Kα1 ∩ . . .∩Kαn is

non-empty. Then the intersection of all sets in {Kα} is non-empty.
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Hint: If you have a collection of closed subsets with empty intersection,

how do you get an open cover out of that collection?

4. Let (X, d) be a metric space, with X 6= ∅. Prove that the following three

conditions are equivalent (as defined in class, (X, d) is called bounded if it

satisfies either of those conditions):

(i) There exists x ∈ X and M ∈ R such that NM (x) = X.

(ii) For any x ∈ X there exists M ∈ R such that NM (x) = X.

(iii) The set {d(x, y) : x, y ∈ X} is bounded above as a subset of R.

5. Suppose that A is a compact connected subset of R. Prove that A is a

closed interval, that is, A = [a, b] for some a ≤ b. Hint: As proved in class,

compact subsets are always closed and bounded, so sup(A) and inf(A) both

exist (in R). Use the fact that A is closed to prove that sup(A), inf(A) ∈ A
and then use Theorem 2.47 in Rudin to prove that A = [inf(A), sup(A)].

6. This problem introduces the concept of the completion of a metric

space. In the statement of the problem we will use the notion of isometric

metric spaces. Metric spaces (X, d) and (X ′, d′) are called isometric (to each

other) if there is a bijection f : X → X ′ such that d(x, y) = d′(f(x), f(y))

for all x, y ∈ X.

Let (X, d) be a metric space. Let Ω be the set of all Cauchy sequences

{xn}n∈N with xn ∈ X for each n. Define the relation ∼ on Ω by setting

{xn} ∼ {yn} ⇐⇒ lim
n→∞

d(xn, yn) = 0.

(a) Prove that ∼ is an equivalence relation.

Now let X = Ω/ ∼, the set of equivalence classes with respect to ∼. The

equivalence class of a sequence {xn} will be denoted by [xn]. For instance,

[ 1n ] = [ 1
n2 ] since the sequences xn = 1

n and yn = 1
n2 are equivalent. Given

an element x ∈ X, we will denote by [x] ∈ X the equivalence class of the

constant sequence all of whose elements are equal to x.

Now define the function D : X ×X → R≥0 by setting

D([xn], [yn]) = lim
n→∞

d(xn, yn) (∗ ∗ ∗)

(b) Prove that the limit on the right-hand side of (***) always exists

and that the function D is well-defined (that is, if [xn] = [x′n] and

[yn] = [y′n], then limn→∞ d(xn, yn) = limn→∞ d(x′n, y
′
n)). Hint: For

the existence of the limit use the fact that R is a complete metric

space.

(c) Prove that (X,D) is a metric space

(d) Consider the map ι : X → X given by ι(x) = [x] (that is, ι sends each

x to the equivalence class of the corresponding constant sequence).
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Prove that ι is injective and D(ι(x), ι(y)) = d(x, y) for all x, y ∈ X.

This implies that (X, d) is isometric to the metric space (ι(X), D) (so

identifying X with ι(X), we can think of X as a subset of (X,D)).

(e) (bonus) Now prove that (X,D) is a complete metric space. For this

reason, (X,D) is called the completion of (X, d). Hint: Let {fk}k∈N
be a Cauchy sequence in (X,D). By definition of (X,D), each fk

is an equivalence of a Cauchy sequence in X, that is fk = [xk,n] for

some elements xk,n ∈ X, n ∈ N. Prove that there is an increasing

sequence of natural numbers m1 < m2 < . . . such that if we define

yn = xn,mn , then the sequence {yn} is Cauchy and its equivalence

class [yn] is the limit of the sequence {fk} (in (X,D)).

(f) (bonus) Assume that X = Q (rationals) and d(x, y) = |x−y|. Prove

that the completion of (X, d) is isometric to reals (with the standard

metric).

7. A metric space (X, d) is called ultrametric if for any x, y, z ∈ X the

following inequality holds:

d(x, z) ≤ max{d(x, y), d(y, z)}.

(Note that this inequality is much stronger than the triangle inequality). If

X is any set and we define the metric d on X by d(x, y) = 1 if x 6= y and

d(x, y) = 0 if x = y, then clearly (X, d) is ultrametric. A more interesting

example of an ultrametric space is given in the next problem.

Prove that properties (i) and (ii) below hold in any ultrametric space (X, d)

(note that both properties are counter-intuitive since they are very far from

being true in R).

(i) Take any x ∈ X, ε > 0 and take any y ∈ Nε(x). Then Nε(y) =

Nε(x). This means that if we take an open ball of fixed radius around

some point x, then for any other point y from that open ball, the

open ball of the same radius, but now centered at y, coincides with

the original ball. In other words, any point of an open ball happens

to be its center.

(ii) Prove that a sequence {xn} in X is Cauchy ⇐⇒ for any ε > 0

there exists M ∈ N such that d(xn+1, xn) < ε for all n ≥M . Note:

The forward implication holds in any metric space.

(iii) Give an example showing that condition (ii) fails for X = R.

8. Let p be a fixed prime number. Define the function | · |p : Q → R≥0 as

follows: given a nonzero x ∈ Q, we can write x = pa cd for some a, c, d ∈ Z
where c and d are not divisible by p . Define |x|p = p−a (note that the

above representation is not unique, but it is easy to see that a is uniquely
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determined by x). For instance,

∣∣∣∣ 9

20

∣∣∣∣
p

=


1
9 if p = 3
4 if p = 2
5 if p = 5
1 for any other p.

Also define |0|p = 0. Now define the function dp : Q×Q→ R≥0 by dp(x, y) =

|y − x|p.
(a) Prove that (Q, dp) is an ultrametric space. (Note: the completion of

this metric space is usually denoted by Qp is called p-adic numbers).

(b) Describe explicitly the set N1(0) (the open ball of radius 1 centered

at 0) in (Q, dp).
(c) Let d be the standard metric on Q (that is, d(x, y) = |y − x| where

| · | is the usual absolute value). Give examples of sequences {xn}
and {yn} in Q such that

(i) xn → 0 in (Q, dp) but {xn} is unbounded as a sequence in (Q, d)

(ii) yn → 0 in (Q, d) but {yn} is unbounded as a sequence in (Q, dp)
Note: It is true that in any metric space Cauchy (in particular,

convergent) sequences are bounded.


