Homework #10. Due Thursday, December 4th, in class Reading:

1. For this homework assignment: Sections 28.1-28.4 and 29.1 from Kolmogorov-Fomin (make sure to read the definition of Lebesgue integral for non-simple functions which we have not discussed in class yet) $+$ class notes (Lectures 23-24) + section on measurable functions in Rudin. Also review the definition of Riemann integral (pp. 120-121).

2. For the class on Tue, Nov 25: Section 29 from Kolmogorov-Fomin. For the classes on Dec 2,4: TBA.

Problems:

1. Let $D : \mathbb{R} \to \mathbb{R}$ be the Dirichlet function (defined by $D(x) = 1$ if $x \in \mathbb{Q}$ and 0 if $x \notin \mathbb{Q}$, and let $a < b$ be real numbers.

(a) Prove that D is Lebesgue-integrable on [a, b] and that $\int D d\mu = 0$.

 $[a,b]$

(b) Prove that D is not Riemann-integrable on $[a, b]$.

2. Let $f : [a, b] \rightarrow \mathbb{R}$ be a Lebesgue-integrable function, and let $g :$ $[a, b] \rightarrow \mathbb{R}$ be another function which coincides with f almost everywhere (by definition this means that $\mu\{x \in [a, b] : f(x) \neq g(x)\} = 0$). Prove that g is also Lebesgue-integrable and $\int f d\mu = \int g d\mu$. $[a,b]$ $[a,b]$

Hint: First prove the result in the special case where f and g are simple. For a general case, let $B = \{x \in [a, b] : f(x) \neq g(x)\}\)$, choose a sequence ${s_n}$ of integrable simple functions such that $s_n \rightrightarrows f$ on [a, b] (which exists by Lemma 24.3) and a sequence $\{t_n\}$ of functions with countable image (not necessarily measurable) such that $t_n \rightrightarrows g$ on [a, b] (which exists by the same argument as in the proof of Lemma 24.3). Define functions $s'_n : [a, b] \to \mathbb{R}$ by

$$
s'_n(x) = \begin{cases} s_n(x) & \text{if } x \notin B \\ t_n(x) & \text{if } x \in B. \end{cases}
$$

Show that the functions s'_n are simple (in particular, measurable), $s'_n \rightrightarrows g$ on [a, b] and deduce the general case from the special case.

3. Let $C \subset [0,1]$ be the Cantor set. The Cantor staircase function is the unique *continuous* function $f : [0, 1] \rightarrow [0, 1]$ which is defined on the complement of the Cantor set by conditions $f(x) = \frac{1}{2}$ if $\frac{1}{3} < x < \frac{2}{3}$, $f(x) = \frac{1}{4}$ if $\frac{1}{9} < x < \frac{2}{9}$, $f(x) = \frac{3}{4}$ if $\frac{7}{9} < x < \frac{8}{9}$, $f(x) = \frac{1}{8}$ if $\frac{1}{27} < x < \frac{2}{27}$, $f(x) = \frac{3}{8}$ if 1

 $\frac{7}{27} < x < \frac{8}{27}$ etc. (Note that this function provides the most natural answer to Problem 2(c) on the second midterm). See

http://en.wikipedia.org/wiki/Cantor_function

Prove that $\int f d\mu = \frac{1}{2}$ $[0,1]$ $\frac{1}{2}$. **Hint:** Use Problem 2 and Problem 3 from HW#9, to construct a suitable simple function g such that \int $[0,1]$ $f d\mu = \int_{[0,1]} g d\mu$ and then compute \int $g d\mu$ directly.

 $[0,1]$

4. Rudin, Problem 3 after Chapter 11 (p. 332). Hint: Use Cauchy criterion to express the set in question in terms of sets of the form $\{x :$ $|f_n(x) - f_m(x)| < \frac{1}{k}$ $\frac{1}{k}$ using countable unions and countable intersections.

5. Kolmogorov-Fomin, Problem 6 after Section 28 (p.292)

6. Kolmogorov-Fomin, Problem 8 after Section 28 (p.292)

7 (bonus). Kolmogorov-Fomin, Problem 9 after Section 28 (pp.292-293).