Homework #2. Due Thursday, September 14th Reading:

1. For this homework assignment: Friedberg-Insel-Spence 6.1, 6.3, Ben Webster's notes: lectures $5,7,8 +$ class notes (Lectures $5,6$)

2. For the next week's classes: Friedberg-Insel-Spence 6.4, 6.5, Ben Webster's notes: lectures 8,9

Problems:

 $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ 0. Give a detailed proof of the fact that a real bilinear form with matrix (with respect to some basis) has signature $(1, 1)$. (Many of you stated this in HW#2 without any explanation).

1. Let V be a finite-dimensional vector space over a field F of characteristic 2 and H a symmetric (=skew-symmetric since char $F = 2$) bilinear form on V. Prove that there exist subspaces V_1 and V_2 of V such that

- (a) $V = V_1 \oplus V_2$ and $V_1 \perp V_2$ (that is, $H(v, w) = 0$ for all $v \in V_1$ and $w \in V_2$).
- (b) $H_{|V_1}$ is diagonalizable (that is, $[H_{|V_1}]_{beta_1}$ is diagonal for some basis β_1 of V_1
- (c) $H_{|V_2}$ is alternating and non-degenerate (such a form is called symplectic).

Hint: Combine the proofs of Theorems 3.4 and 5.1 from class.

2. Let H be a bilinear form on a vector space V .

- (a) Assume that V is finite-dimensional. Prove that H is left-nondegenerate if and only if H is right-nondegenerate.
- (b) (bonus) Construct an example of an infinite-dimensional vector space V and a bilinear form H on V which is left-nondenerate but not rightnondegenerate.
- 3. Let V be an inner product space.
- (a) Prove the parallelogram law: $||x + y||^2 + ||x y||^2 = 2(||x||^2 + ||y||^2)$ for all $x, y \in V$.
- (b) Show that $\langle x, y \rangle$ can be expressed as a linear combination of squares of norms. In Lecture 6 we discussed how to do this for the real inner product spaces.

4. Let V be a finite-dimensional complex inner product space and $A \in \mathcal{L}(V)$. Prove that $\text{Im}(A^*) = \text{Ker}(A)^{\perp}$ (where the orthogonal complement is with respect to the inner product on V).

5. Let V be an inner product space where dim V is finite or countable, β an orthonormal basis of V and $A \in \mathcal{L}(V)$.

- (a) Prove that if $A^* \in \mathcal{L}(V)$ is any operator such that $\langle Ax, y \rangle = \langle x, A^*y \rangle$ for all $x, y \in V$, then $[A^*]_\beta = [A]_\beta^*$ (where $[A]_\beta^*$ is the conjugate transpose of A). In particular, this shows that the adjoint operator is unique (if exists).
- (b) As we proved in class, the adjoint A^* always exists if dim V is finite. Now use (a) and a result from earlier homeworks to show that if V is countably-dimensional, then the adjoint A^* may not exist.