
Homework #2. Due Thursday, September 14th

Reading:

1. For this homework assignment: Friedberg-Insel-Spence 6.1, 6.3, Ben Web-

ster’s notes: lectures 5,7,8 + class notes (Lectures 5,6)

2. For the next week’s classes: Friedberg-Insel-Spence 6.4, 6.5, Ben Webster’s

notes: lectures 8,9

Problems:

0. Give a detailed proof of the fact that a real bilinear form with matrix(
0 1
1 0

)
(with respect to some basis) has signature (1, 1). (Many of you

stated this in HW#2 without any explanation).

1. Let V be a finite-dimensional vector space over a field F of characteristic

2 and H a symmetric (=skew-symmetric since charF = 2) bilinear form on

V . Prove that there exist subspaces V1 and V2 of V such that

(a) V = V1 ⊕ V2 and V1 ⊥ V2 (that is, H(v, w) = 0 for all v ∈ V1 and

w ∈ V2).

(b) H|V1 is diagonalizable (that is, [H|V1 ]β1 is diagonal for some basis β1 of

V1)

(c) H|V2 is alternating and non-degenerate (such a form is called symplec-

tic).

Hint: Combine the proofs of Theorems 3.4 and 5.1 from class.

2. Let H be a bilinear form on a vector space V .

(a) Assume that V is finite-dimensional. Prove thatH is left-nondegenerate

if and only if H is right-nondegenerate.

(b) (bonus) Construct an example of an infinite-dimensional vector space

V and a bilinear form H on V which is left-nondenerate but not right-

nondegenerate.

3. Let V be an inner product space.
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(a) Prove the parallelogram law: ‖x+ y‖2 + ‖x− y‖2 = 2(‖x‖2 + ‖y‖2) for

all x, y ∈ V .

(b) Show that 〈x, y〉 can be expressed as a linear combination of squares

of norms. In Lecture 6 we discussed how to do this for the real inner

product spaces.

4. Let V be a finite-dimensional complex inner product space and A ∈ L(V ).

Prove that Im(A∗) = Ker(A)⊥ (where the orthogonal complement is with

respect to the inner product on V ).

5. Let V be an inner product space where dimV is finite or countable, β an

orthonormal basis of V and A ∈ L(V ).

(a) Prove that if A∗ ∈ L(V ) is any operator such that 〈Ax, y〉 = 〈x,A∗y〉 for

all x, y ∈ V , then [A∗]β = [A]∗β (where [A]∗β is the conjugate transpose

of A). In particular, this shows that the adjoint operator is unique (if

exists).

(b) As we proved in class, the adjoint A∗ always exists if dimV is finite.

Now use (a) and a result from earlier homeworks to show that if V is

countably-dimensional, then the adjoint A∗ may not exist.
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