
Homework #2. Due Thursday, September 7th

Reading:

1. For this homework assignment: Ben Webster’s notes: lectures 3,4 + class

notes (Lectures 3,4)

2. For the next week’s classes: Ben Webster’s notes: lectures 5,7,8 (note that

there is no lecture 6)

Problems:

For problems (or their parts) marked with a *, a hint is given later in the

assignment. Do not to look at the hint(s) until you seriously tried to solve

the problem without it.

1. Let V and H be as in Problem 3 of Homework 1.

(a) Prove that H is positive definite directly from definition. You will need

some basic facts from real analysis to make the argument rigorous.

(b) Now use the “modified Gram-Schmidt process” (that is, the algorithm

from the proof of Theorem 3.4 from class) to find a basis β such that

[H]β is the identity matrix.

2.* Let V = Matn(R) for some n ∈ N, and let H be the bilinear form on V

given by H(A,B) = Tr(AB). Prove that H is symmetric and compute its

signature. It may be a good idea to start with n = 2 and n = 3.

3. The goal of this problem is to prove the following theorem:

Theorem: Let F be a finite field with char(F ) 6= 2, V a finite-dimensional

vector space and H a symmetric bilinear form on V . Then there exists a

basis β of V such that [H]β is diagonal and at MOST one entry of [H]β is

different from 0 or 1 (in particular, if H is non-degenerate, then there exists

a basis β such that [H]β = diag(1, . . . , 1, λ) for some λ ∈ F ).

If you do not feel comfortable working with arbitrary finite fields, you can

assume that F = Zp for some p > 2 (this does not substantially simplify the

problem).

(a) * Let Q be the set of squares in F , that is, Q = {f ∈ F : f =

x2 for some x ∈ F}. Prove that |Q| = |F |+1
2

.
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(b) * Now take any nonzero a, b ∈ F . Use (a) to prove that there exist

x, y ∈ F such that ax2 + by2 = 1.

(c) Now use (b) to prove the above Theorem. Hint: The main case to

consider is when dim(V ) = 2 and H is non-degenerate. Once you prove

the theorem in this case, the general statement follows fairly easily by

induction (using the diagonalization theorem, Theorem 3.4). In the

case dim(V ) = 2 and H is non-degenerate we already know that there

is a basis β such that [H]β is diagonal with nonzero diagonal entries.

Now starting with that basis, try to imitate the proof of Theorem 3.4,

using (b) at some stage.

4.* Let H be a bilinear form on a finite-dimensional vector space V . In class

we proved that for any subspace W of V we have dim(W ) + dim(W⊥) ≥
dim(V ) (Lemma 3.2) where W⊥ is the orthogonal complement of W with

respect to H. Prove that if H is non-degenerate, then dim(W )+dim(W⊥) =

dim(V ). One way to prove this is to show that the map φ from the proof of

Lemma 3.2 is surjective.

5. In this problem we discuss linear maps and bilinear forms on vector spaces

of (infinite) countable dimension over an arbitrary field F . One example of

such a space is F∞
fin, the set of (infinite) sequences of elements of F in which

only finitely many elements are nonzero. The set {e1, e2, . . .} is a basis of

F∞
fin where ei is the sequence whose ith element is 1 and all other elements

are 0.

Now let V be any countably-dimensional vector space over F and β =

{v1, v2, . . .} a basis of V . Any v ∈ V is a linear combination of finitely many

elements of β, so we can write v =
∑n

i=1 λivi for some n (if some vi with

i ≤ n does not appear in the expansion of v, we simply let λi = 0). Define

[v]β = (λ1, . . . , λn, 0, 0, . . .) ∈ F∞
fin.

(a) (practice) Prove that the map φ : V → F∞
fin given by φ(v) = [v]β is an

isomorphism of vector spaces.

Denote by Mat∞(F ) the set of all matrices with countably many rows and

columns whose entries are in F . Given a bilinear form H on V , let [H]β ∈
Mat∞(F ) be the matrix whose (i, j)-entry is H(vi, vj).

(b) Prove that H(v, w) = [v]Tβ [H]β][w]β for any v, w ∈ V (here we consider

[v]β and [w]β as columns). In particular, explain why the expression on

the right-hand side is well defined even though [H]β is an infinite-size

matrix.
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(c) Prove that the map Φ : Bil(V )→ Mat∞(F ) given by Φ(H) = [H]β is

an isomorphism of vector spaces.

Now let T ∈ L(V ) be a linear map from V to V . Define [T ]β ∈Mat∞(F ) to

be the matrix whose ith column is [Tvi]β.

(d) Prove that the map Ψ : L(V ) → Mat∞(F ) given by Ψ(T ) = [T ]β
is linear and injective, but not surjective, and explicitly describe its

image.

3



Hint for 2. Start by computing the matrix of H with respect to the “stan-

dard” basis {eij}. This matrix is not diagonal, but if you order the elements

of {eij} in the right way, the matrix will be block-diagonal with blocks of size

at most 2.
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Hint for 3(a). Show that if F is any field with char(F ) 6= 2, then for any

nonzero f ∈ F the equation x2 = f has either 2 or 0 solutions.
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Hint for 3(b). Rewrite the equation as 1 − ax2 = by2 and use a counting

argument (what you need from (a) is that more than half of all elements of

F are squares).
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Hint for 4. Let {w1, . . . , wm} be a basis of W , and assume that φ from the

proof of Lemma 3.2 is not surjective. Show that there exist λ1, . . . , λm ∈ F ,

not all zero, such that
∑m

i=1 λiH(wi, v) = 0 for all v ∈ V and deduce that H

must be degenerate.
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