
Homework #8

Due Sat, March 30th by 11:59pm on Canvas

Reading and plan for the next week:

1. For this homework assignment read 3.2, 3.3, 7.1 and beginning of

7.2 + online lectures 15 and 16 from Spring 20.

2. Plan for next week: We will continue talking about cyclic codes.

Right now we are in the middle of online Lecture 16 from Spring 20.

The current plan is to cover the rest of 16, 17 and at least the first half

of 18. The corresponding sections in the book are 7.2 and 7.3.

Problems:

1. Problem 3.7 (b)(d). Note: we did part (a) in Lecture 16 in class

on Tue, March 19th (but it is not included in the posted notes from

Lecture 16). Part (c) is solved in the online Lecture 15 from Spring

20, but you should try to do it yourself first (either way you probably

need to solve (c) as preparation for (d)).

2. Problem 3.10.

3. Problem 3.13. For a brief discussion of primitive elements see online

notes from Lecture 15 from Spring 20 (we have not discussed primitive

elements in class so far). Note that to answer the question for F8 and

F9 you first have to realize F8 and F9 in the form Fp[x]/(f(x)) for

appropriate p and irreducible f(x) ∈ Fp[x] (you have to choose specific

f(x) for your computation).

4.(a) Problem 3.9. The existence of u(x) and v(x) satisfying the

condition of 3.9 (including the degree restrictions) follows from

a general theorem stated in part (b) below.

(b) (bonus) Let F be a field, let f(x), g(x) ∈ F [x] be nonzero poly-

nomials, h(x) = gcd(f(x), g(x)), n = deg f(x), m = deg g(x)

and d = deg h(x). Prove that the exist UNIQUE polynomials

u(x), v(x) ∈ F [x] such that

(i) h(x) = f(x)u(x) + g(x)v(x) and

(ii) deg u(x) < n− d and deg v(x) < m− d.

Moreover, prove that one can construct such u(x) and v(x)

by applying part 2 of the Euclidean algorithm in F [x]. Hint:

First prove the result in the special case where h(x) = 1. Then

deduce the general case from this special case.
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5. Problem 7.2.

6. Problem 7.3. Make sure to prove your answer.

7. Let A be an alphabet and n ∈ N. Recall that a code C ⊆ An is

shift-invariant if (a1 . . . an ∈ C ⇒ ana1 . . . an−1 ∈ C).

Now define a relation ∼ on An by w ∼ v ⇐⇒ v can be obtained

from w by a cyclic shift (by some number of positions). It is not hard

to show that ∼ is an equivalence relation. One can reformulate the

definition of a shift-invariant code in terms of ∼: a code C ⊆ An is

shift-invariant if and only if C is a union of (some) equivalence classes

with respect to ∼.

(a) Describe the equivalence classes on F3
2 with respect to ∼

(b) Use (a) to determine the number of binary shift-invariant codes

of length 3

(c) Now describe all binary cyclic codes of length 3 (and prove there

are no other such codes).

8. Let F be a field and n ∈ N.
(a) Let C ⊆ F n be a linear code. Suppose that C has a genera-

tor matrix G whose set of rows is invariant under cyclic shifts.

Prove that C is a cyclic code.

(b) Give an example of a cyclic code which does NOT have a gen-

erator matrix G satisfying the condition in (a).


