
Homework #11. Due Tue, April 30th by 11:59pm on Canvas

Reading for this homework: Online Lectures 23-25 (both from

Spring 20 and Spring 24) and Chapter 7 in Lindell’s notes.

Plan for Lecture 26 (Tue, April 23rd). We will show how concate-

nated codes combined with the asymptotic Gilbert-Varshamov bound

can be used to construct a family of asymptotically good codes with

polynomial encoding time complexity. Then we will discuss another

algorithm for decoding the concatenated codes, called the errors and

erasures decoding.

Problems:

1.

(a) Deduce from the binary Plotkin bound that for any n, d ∈ N
with n ≤ 2d we have A2(n, d) ≤ 4d.

(b) Now assume that n > 2d. Prove that B2(n, d) ≤ 2n−2d+2 · d,
that is, for any binary linear code C of length n and distance d

we have |C| ≤ 2n−2d+2 · d.
Hint: Given m ≤ n, let us think of Fm

2 as the subspace of Fn
2

consisting of all vectors whose last n−m coordinates are zero.

Now consider the code C ′ = C ∩ F2d
2 . Show that the size of C ′

can be bounded above using the Plotkin bound. Then use the

fact that dim(U ∩W ) = dim(U) + dim(W )− dim(U +W ) for

any vector subspaces U and W of a finite-dimensional vector

space V , deduce the desired bound on |C|.
(c) Now let C = {Cm}∞m=1 be a sequence of binary linear codes.

Assume that Cm is [nm, km, dm]-linear where nm → ∞ as m →
∞. Also assume that the asymptotic relative distance δ(C) =
lim infm→∞ δ(Cm) = lim infm→∞

dm−1
nm

satisfies δ(C) ≥ 1
2
. Use

(a) and (b) to prove that R(C) = 0.

Recall that R(C) = lim infm→∞R(Cm) = lim infm→∞
km
nm

. If

you are not comfortable with liminf, you may assume that the

limit in the definition of δ(C) exists.

2. Prove Lemma 24.1 from Spring 20 online notes.

3. Prove that an [n, k, d]-linear code over Fq satisfying the Gilbert-

Varshamov bound can be constructed using at most qn−k · k(n − k)

additions in Fq.
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Hint: For the proof of the Gilbert-Varshamov bound see 5.2.2 in the

book or online Lecture 23 (up to minor variations, both are essentially

the same as the proof we gave in class in Lecture 14). To prove the

above bound estimate (1) the number of columns of PCM that need

to be computed, (2) the number of prohibited vectors at each step and

(3) the number of additions needed to calculate each prohibited vector.

4. Let B = PCC3, the parity-check code of length 3, and let A be the

zero-sum code of length 4 over F4. Verify that the concatenated code

B ◦ A is defined and compute its length, dimension, distance AND a

generator matrix (equivalently, find its basis).

Hint: If φ is the map from the definition of the concatenated code (in

the notations from class) and S is a basis of A, then φ(S) is linearly

independent, but it will usually not be a basis for φ(A) = B ◦ A.

However, it is easy to describe a basis for B ◦ A in terms of S and

multiplication in Fqk (the field over which A is defined).

Warning: The notations in class differ from those in Spring 20 notes

and Lindell’s Section 7.2. The map φ from class is called φ∗ in Spring

20 notes and Lindell’s notes. It is not hard to see that the map φ∗

in the Spring 20 notes is given by φ(v) = R(v)GB where R is the

restriction of scalars and GB is the generator matrix for B whose rows

are elements of the chosen basis.

5. Let A = B = Rep(1, 5), the simple binary repetition code of length

5 (thus Rep(1, 5) = {05, 15}).

(a) Prove that the concatenated code B ◦A is defined and is equal

to Rep(1, 25).

The remainder of the problem investigates the following decoding rules

for B ◦ A:

• NND decoding (treating B ◦ A as a single code)

• N2SD decoding – naive 2-stage decoding as defined in Lecture

25 on April 18.

• EEDs decoding – the errors and erasures decoding with the

threshold emin = s (the definition, which will be discussed in

class on April 23, is summarized below). In this example we

can consider EEDs for s = 0, 1 and 2.

Note that in this example NND can correct up to ⌊25−1
2

⌋ = 12 er-

rors, while N2SD can correct up to (⌊5−1
2
⌋ + 1)2 − 1 = 8 errors (see

Theorem 25.2’ in online Lecture 25 from Spring 24).
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(b) Explain why in this example EED2 coincides with N2SD. What

property of Rep(1, 5) does this reflect?

(c) Give an example where 9 errors occur during the transmission,

N2SD works incorrectly while EED1 works correctly.

(d) Give an example where 12 errors occur during the transmission,

N2SD works correctly while EED1 works incorrectly.

(e) Now give an example where 12 errors occur during the trans-

mission, N2SD and EED1 both work incorrectly, but EED0

works correctly

(f) (bonus) Prove that if ≤ 12 erros occur during the transmission,

then at least 1 of the following 3 rules – N2SD, EED1 or EED0

works correctly.

Definitions of N2SD and EEDs. We first briefly recall the definition

of N2SD applied to the concatenated code B ◦ A where B is [n, k]-

linear over Fq and A is [N,m]-linear over Fqk . Take the received word

w ∈ FnN
q , write it as w = w1 . . . wN with wi ∈ Fn

q , and for each i decode

wi using NND for B to get the word u = u1 . . . uN with ui ∈ Fn
q . Then

write each ui as ui = R(vi)GB (where R : Fqk → Fk
q is the restriction

of scalars) and decode v = v1 . . . vN ∈ FN
qk

using NND for A.

Now fix a non-negative integer s and define EEDs as follows. For

each 1 ≤ i ≤ N define ui as in N2SD, compute d(ui, wi) and call ui

questionable if d(γi, wi) > s. Now let v′ be the word obtained from

v = v1 . . . vN defined in N2SD by replacing vi by the erasure symbol

? (we will use ? instead of the symbol used in class) whenever ui is

questionable. Now decode v′ using NND for A ignoring the positions

with the erasure symbol. Formally this means that we remove the

erasure symbols ? from v′ and then decode using NND for A′ where A′

is the code obtained from A by puncturing the coordinates where the

erasure symbols occurred.

Let us see an example how this works for A and B in this problem.

Suppose the received word is w = (140)(1302)(1302)(140)(104). N2SD

will first decode it to (15)(15)(15)(15)(05) (this is our u). The corre-

sponding v is then 11110 which will be decoded to 15 ∈ A using NND

for A. If we use EED1, v
′ will be 1??10 since we have to correct more

than 1 error when B-decoding w2 and w3. Since this word has more

1’s than 0’s, it will still be decoded to 11111.

Now suppose w = (140)(1302)(1302)(1302)(104). If we apply N2SD,

v and the decoded word will be the same as in the previous case.
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However, if we apply EDD1, v
′ will be 1???0 – in this case NND for A

will randomly choose between 05 and 15.


