Homework #4. Due Thursday, Feb 20th, by 1pm in my mailbox Reading and plan for the next week:

1. For this homework assignment read 4.8, 5.1 and parts of 5.2

2. Plan for next week: 5.1-5.4. I am not sure about the order, but we will almost definitely start with the sphere-covering bound (5.2) and sphere-packing bound (5.3)

Problems:

1. Problem 4.27. Hint: This problem can be solved using the same idea as 4.20(i), (ii), but there is a more conceptual solution involving cosets.

2. Problem 4.47. In addition to what you are asked to do in the book, construct the syndrome look-up table and use it to decode the three words given in the problem.

3. Problem 4.44.

4. Let $r \ge 2$, let $N = 2^r - 1$ and let Ham(r, 2) be the binary Hamming code of length N (see 5.3.1). Recall that we proved in Lecture 7 that Ham(r, 2) has distance 3.

- (a) Consider the following $N+1 = 2^r$ elements: $0, e_1, \ldots, e_N$ (where e_i is the *i*th element of the standard basis). Prove that every coset of Ham(r, 2) in \mathbb{F}_2^N contains exactly one of these elements.
- (b) Deduce from (a) that for every $w \in \mathbb{F}_2^N$ there exists $c \in Ham(r, 2)$ such that $d(w, c) \leq 1$. This implies that Ham(r, 2) is a perfect code (a slightly different proof of this fact will be given in class next week).
- 5. In parts (a) and (b) of this problem assume that $d \ge 2$.
 - (a) Prove that $A_q(n,d) \leq A_q(n,d-1)$. In other words, fix an alphabet A with |A| = q and prove the following: if there exists an (n, M, d)-code C over A, there also exists an (n, M, d-1)-code C' over A. You should give a precise argument; do not try to say this is obvious or something like that.
 - (b) Now prove that $A_q(n,d) \leq A_q(n-1,d-1)$. **Hint:** one way to do this is to imitate the second solution to HW 1.1 given in Lecture 9. You will likely need (a) to complete the argument.

- (c) Now use (b) and induction to prove the singleton bound: $A_q(n,d) \leq$ q^{n-d+1} .
- 6. You are not allowed to use the Plotkin bound in this problem.
 - (a) Assume that $\frac{2n}{3} < d \leq n$. Prove that $A_2(n,d) = 2$. Hint: Use the same idea as in the proof of the equality $A_2(5,4) = 2$ given in Lecture 9.

 - (b) Assume now that $d = \frac{2n}{3}$. Prove that $A_2(n, d) \ge 4$. (c) (bonus) Now prove that if $d = \frac{2n}{3}$, then $A_2(n, d) = 4$.

 $\mathbf{2}$