
Homework #11

Due Tue, April 28th by 11:59pm in filedrop

Reading and plan for the last class:

1. For this homework assignment read 5.2.2 in the book, 4.2 and Chap-

ter 7 in Lindell’s notes and class notes from Lectures 22-24.

2. Plan for the last class: We will start by introducing concatenation of

codes (6.3.1 in the book and 7.2 in Lindell’s notes). Then I plan to go

back to Lecture 24 and present a corrected construction of asymptot-

ically good sequences of codes that can be constructed in polynomial

time. There should be time left after that, so we may be able to briefly

discuss another topic.

Problems:

1. Let us recall the restriction of scalars construction introduced in

Lecture 22. Let p be a prime, m ∈ N and q = pm. As usual, we can

identify the field Fq with the set

Polk(Fp) =

{
m−1∑
i=0

aix
i : ai ∈ Fp

}

consisting of polynomials over Fp of degree ≤ k − 1. To describe the

multiplication in Polk(Fp) under this identification we need to choose

an irreducible polynomial of degree k over Fp, but this will not be

necessary here.

Define the map ρ : Fq → Fm
p which sends each polynomial to the

sequence of its coefficients:

ρ

(
m−1∑
i=0

aix
i

)
= (a0, a1, . . . , am−1)

(ρ is the inverse of the map that we always denoted by π in our discus-

sion of cyclic codes).

For any n ∈ N we can extend ρ to a map ρn : Fn
q → (Fm

p )n = Fmn
p

which applies ρ to each coordinate:

ρn((f1(x), . . . , fn(x))) = (ρ(f1(x)), . . . , ρ(fn(x))),
1



2

or, more explicitly,

ρn(
m−1∑
i=0

ai1x
i,

m−1∑
i=0

ai2x
i, . . . ,

m−1∑
i=0

ainx
i)

= (a01, a11, . . . , am−1,1, a02, . . . , am−1,2, . . . , a0n, . . . , am−1,n).

It is straightforward to check that ρn is an isomorphism of vector spaces

over Fp.

Now let C be a linear code over Fq of length n, and define CFp = ρn(C).

We say that the code CFp is obtained from C by restriction of scalars.

Finally, we formulate the actual problem:

(a) Let C be the zero-sum code of length 3 over F4, that is, C =

{(x1, x2, x3) ∈ F3
4 : x1 + x2 + x3 = 0}. Describe the code CF2 as

the set of solutions to (an explicit) system of linear equations

over F2.

(b) Let C be any [n, k, d]-linear code over Fpm . Prove that CFp is

an [nm, km, d′]-linear code over Fp with d′ ≥ d (this is the first

part of Theorem 22.2 from class).

2.

(a) Deduce from the binary Plotkin bound that for any n, d ∈ N
with n ≤ 2d we have A2(n, d) ≤ 4d.

(b) Now assume that n > 2d. Prove that B2(n, d) ≤ 2n−2d+2 · d,

that is, for any binary linear code C of length n and distance d

we have |C| ≤ 2n−2d+2 · d.

Hint: Given m ≤ n, let us think of Fm
2 as the subspace of Fn

2

consisting of all vectors whose last n−m coordinates are zero.

Now consider the code C ′ = C ∩ F2d
2 . Show that the size of C ′

can be bounded above using the Plotkin bound. Then use the

fact that dim(U ∩W ) = dim(U) + dim(W )− dim(U + W ) for

any vector subspaces U and W of a finite-dimensional vector

space V , deduce the desired bound on |C|.
(c) Now let C = {Cm}∞m=1 be a sequence of binary linear codes.

Assume that Cm is [nm, km, dm]-linear where nm →∞ as m→
∞. Also assume that the asymptotic relative distance δ(C) =

lim infm→∞ δ(Cm) = lim infm→∞
dm−1
nm

satisfies δ(C) ≥ 1
2
. Use

(a) and (b) to prove that R(C) = 0.

Recall that R(C) = lim infm→∞R(Cm) = lim infm→∞
km
nm

. If

you are not comfortable with liminf, you may assume that the

limit in the definition of δ(C) exists.
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3. Prove Lemma 24.1 from class.

4. Prove that an [n, k, d]-linear code over Fq satisfying the Gilbert-

Varshamov bound can be constructed using at most qn−k · k(n − k)

additions in Fq.

5. Let B = PCC3, the parity-check code of length 3, and let A be the

zero-sum code of length 4 over F4. Verify that the concatenated code

B ◦ A is defined and compute its length, dimension, distance AND a

generator matrix. Note: For the definition of the concatenated code

see Theorem 6.3.1 in the book or 7.2 in Lindell’s notes; I recommend

the latter. The concatenated code is defined as the image of a certain

injective linear map. Whenever the code is defined in this way, there

is a simple general way to find its GM – if you are not sure what it is,

recall the definition of GM.


