
Homework #10

Due Tue, April 21st by 23:59pm in filedrop

Reading and plan for the next week:

1. For this homework assignment read 7.5, 6.1 and 6.2 in Lindell’s

notes and class notes from Lectures 19-22.

2. Plan for next week: Asymptotically good codes. This material is

not in our main book, but it is discussed in Lindell’s notes (see 4.1, 4.2

and Chapter 7). There is way too much material in those sections, so

I will probably just discuss the main results and ideas, skipping many

proofs.

Problems:

1. Let C be a narrow-sense RS (Reed-Solomon) code over F7 (as defined

in Lecture 20) of dimension k = 4 (such a code is unique up to the

choice of primitive element α). Write down explicitly a GM for C,

a PCM for C and the generator polynomial for C (all matrix entries

and coefficients of the polynomial in your answer should be explicit

elements of F7).

2. Let F be a finite field, q = |F | and n = q − 1.

(a) Given β ∈ F , let Σ(β) =
n−1∑
j=0

βj. Prove that Σ(1) = −1 and

Σ(β) = 0 for β 6= 0, 1. Hint: Consider the cases β = 0, 1

separately. For all other β recall how to find the sum of a finite

geometric progression.

(b) Let α ∈ F be a primitive element, set αi = αi−1 for 1 ≤ i ≤ n,

and let ~α = (α1, . . . , αn) and ~v = (v1, . . . , vn) for some nonzero

vi ∈ F . Let C = GRS(~α,~v) for some k. Recall from Lecture 20

that GRS codes of this type are called primitive.

For each 1 ≤ i ≤ n set wi = αi

vi
= αi−1

vi
. Use (a) to prove that

these elements w1, . . . , wn are valid GM multipliers for C, that

is, they satisfy the conclusion of Theorem 19.4 from class.

3. Give a new proof of the fact that GRS codes are MDS using polyno-

mial representation of GRS codes (see the section “Explicit description

of elements of GRSk(~α,~v)” at the end of Lecture 19). You only need to

use the description obtained in this section, not the original definition.
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Hint: use the fact that for any field F , a nonzero polynomial of degree

m over F cannot have more than m roots.

4. Prove Lemma 21.2 from class (in the proof make sure to use the def-

inition given in Lecture 21). Hint: for the second part of Lemma 21.2

(dealing with burst error correction) it may be convenient to “negate

the definition of an E-error correcting code”, that is, to rewrite the

definition in the form “A code C is NOT E-error correcting ⇐⇒ ...”

5. Prove Theorem 22.1 from class. Recall that in class we discussed a

specific example illustrating the proof. As in the example, it is probably

most convenient to use part of Lemma 21.2 recalled at the beginning

of Lecture 22.

6. Let D be the binary cyclic code of length 9 with generator polyno-

mial g(x) = 1 + x3 + x6.

(a) Show that D has the form IL(Cm) (in the notations from Lec-

ture 22) for some (specific) C and m. Deduce that D is 3-burst

error correcting.

(b) Use the error trapping algorithm to decode the word w =

110111000 (as a polynomial w = 1 + x+ x3 + x4 + x5).

Some remarks on 6(b):

(i) Using the description of D from (a), it is easy to guess the

answer (and once you correctly guessed c, you can justify that

you guessed correctly using the fact that D is 3-burst error

correcting). Nevertheless, you should still show how to get the

answer using error trapping.

(ii) The syndromes si = S(xi�w) are not hard to compute directly

from definition, but you may use the recursive formula si+1 =

(xsi) mod g(x) (if you do use this formula, at least think why

it should be true).

(iii) HW# 9.1 describes a “shortcut” for computing the remain-

ders modulo xn − 1. There is a similar shortcut for finding the

remainders modulo any polynomial (try to formulate it in gen-

eral). The amount of time it saves depends on the number of

nonzero monomials in the poynomial you are dividing by (the

fewer monomials, the better). So, for g(x) = x6 + x3 + 1 which

has 3 monomials, it would not work as well as for xn − 1, but

still pretty well.


