
A note on the generator polynomials

The goal of this note is to relate the definition of the generator

polynomial for a cyclic code given in class to the definition given in

the book. As usual, for a field F a n ∈ N we let Rn = Rn(F ) =

F [x]/(xn − 1) and π : F n → Rn(F ) is the map given by

π((a0, . . . , an−1)) =
n−1∑
k=0

akx
k.

Also recall that for u(x), v(x) ∈ Rn we set u(x) � v(x) = (u(x)v(x))

mod (xn − 1), the product of u(x) and v(x) in Rn.

The following is the definition of the generator polynomial from the

book.

Definition 1. Let C be a nonzero cyclic code of length n over F .

The generator of C is the unique monic polynomial of smallest possible

degree in π(C).

Let us see that such a polynomial is indeed unique. First, we need to

show that π(C) contains at least one monic polynomial. This is clear –

since C 6= 0 and π is bijective, π(C) contains some nonzero polynomial

f(x). If we divide f(x) by its leading coefficient, we obtain a monic

polynomial which still lies in π(C) since π(C) is closed under scalar

multiplication.

Next we prove uniqueness. Suppose, by way of contradiction, that

π(C) contains two distinct monic polynomials g1(x) and g2(x) which

both have degree k, where k is the smallest possible degree of a monic

polynomial in π(C). Thus, for i = 1, 2 we have gi(x) = xk+ri(x) where

deg ri(x) < k. But then g1(x)− g2(x) = r1(x)− r2(x) is a NONZERO

polynomial which still lies in π(C). Again dividing g1(x)− g2(x) by its

leading coefficient, we obtain a monic polynomial of degree < k which

lies in π(C). This contradicts the choice of k.

Thus, we showed that generator of C is well-defined according to the

above definition.

Let us now recall the definition from class:

Definition 2. Let C be a nonzero cyclic code of length n over F . The

generator of C is the unique polynomial in Rn satisfying the following

3 conditions:
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(i) 〈g(x)〉 = π(C)

(ii) g(x) is monic

(iii) g(x) divides xn − 1

Theorem 1. Suppose that g(x) is the generator of C according to

Definition 1, that is, g(x) is the unique monic polynomial of smallest

possible degree in π(C). Then g(x) is also the generator of C according

to Definition 2, that is, g(x) satisfies conditions (i)-(iii) above.

Proof. Condition (ii) holds by assumption.

Let us now check condition (i). Since g(x) ∈ π(C) by assumption

and π(C) is an ideal, all the multiples of g(x) are also in π(C), so

〈g(x)〉 ⊆ π(C).

To prove the reverse inclusion, take any f(x) ∈ π(C) and divide it by

g(x) with remainder. We get f(x) = g(x)q(x) + r(x) where deg r(x) <

deg g(x). Since g(x)q(x) = g(x)� q(x) ∈ 〈g(x)〉 ⊆ π(C), we have

r(x) = f(x)− g(x)q(x) ∈ π(C).

If r(x) 6= 0, then dividing r(x) by its leading term, we get a monic poly-

nomial in π(C) whose degree is less than deg g(x), which is impossible.

Therefore, r(x) = 0 and hence f(x) = g(x)q(x) = g(x)� q(x) ∈ 〈g(x)〉.
Thus, we proved the reverse inclusion π(C) ⊆ 〈g(x)〉 and therefore

condition (i).

Finally, let us prove (iii). Again, we can always divide xn−1 by g(x)

with remainder: xn−1 = g(x)Q(x)+R(x) where deg(R(x)) < deg g(x).

Rewriting this equality as g(x)Q(x) = xn − 1 − R(x) and taking the

remainders of both sides mod xn − 1, we get g(x) � Q(x) = −R(x)

and so −R(x) ∈ 〈g(x)〉 ⊆ π(C). Since deg(−R(x)) < deg g(x), as in

the proof of (i) this implies that R(x) = 0 and therefore g(x) divides

xn − 1, as desired. �

Remark: The proof of (i) actually shows that if g(x) is the generator

for C, then

(i)’ π(C) is the set of all f(x) ∈ Rn such that f(x) = g(x)u(x) for

some u(x) ∈ F [x] (this is a product in F [x])

A priori (i)’ is a stronger condition than (i): if we take an arbitrary

element g(x) ∈ Rn, the ideal 〈g(x)〉 can be strictly larger than the set

Mult(g(x)) = {f(x) ∈ Rn : f(x) = g(x)u(x) for some u(x) ∈ F [x]}.

For instance, take g(x) = x. Then 1 ∈ 〈g(x)〉 since x�xn−1 = (x ·xn−1)

mod (xn − 1) = 1, but 1 6∈ Mult(g(x)). However, it is true that

〈g(x)〉 = Mult(g(x)) whenever g(x) is a divisor of xn − 1.


