A note on the generator polynomials

The goal of this note is to relate the definition of the generator
polynomial for a cyclic code given in class to the definition given in
the book. As usual, for a field FF an € N we let R, = R, (F) =
Flz]/(z" — 1) and 7 : F™ — R, (F) is the map given by

n—1
m((ag, ..., an_1)) = Z apx”.
k=0
Also recall that for u(x),v(z) € R, we set u(z) © v(z) = (u(z)v(z))
mod (z" — 1), the product of u(x) and v(x) in R,.

The following is the definition of the generator polynomial from the

book.

Definition 1. Let C' be a nonzero cyclic code of length n over F.
The generator of C' is the unique monic polynomial of smallest possible
degree in w(C).

Let us see that such a polynomial is indeed unique. First, we need to
show that 7(C') contains at least one monic polynomial. This is clear —
since C' # 0 and 7 is bijective, m(C') contains some nonzero polynomial
f(z). If we divide f(x) by its leading coefficient, we obtain a monic
polynomial which still lies in 7(C) since m(C) is closed under scalar
multiplication.

Next we prove uniqueness. Suppose, by way of contradiction, that
7(C') contains two distinct monic polynomials ¢;(x) and go(x) which
both have degree k, where k is the smallest possible degree of a monic
polynomial in 7w(C). Thus, for i = 1,2 we have g;(z) = 2*+r;(x) where
degr;(z) < k. But then gy(z) — g2(x) = r1(x) — ro(z) is a NONZERO
polynomial which still lies in 7(C'). Again dividing g1 (x) — go(z) by its
leading coefficient, we obtain a monic polynomial of degree < k which
lies in w(C'). This contradicts the choice of k.

Thus, we showed that generator of C'is well-defined according to the
above definition.

Let us now recall the definition from class:

Definition 2. Let C be a nonzero cyclic code of length n over F'. The
generator of C'is the unique polynomial in R,, satisfying the following

3 conditions:
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(i) (g(z)) ==(C)
(ii) g(x) is monic
(iii) g(z) divides 2" — 1

Theorem 1. Suppose that g(x) is the generator of C according to
Definition 1, that is, g(x) is the unique monic polynomial of smallest
possible degree in w(C'). Then g(x) is also the generator of C according
to Definition 2, that is, g(x) satisfies conditions (i)-(iii) above.

Proof. Condition (ii) holds by assumption.
Let us now check condition (i). Since g(x) € w(C) by assumption
and 7(C') is an ideal, all the multiples of g(z) are also in 7(C'), so

{9(x)) € 7(C).
To prove the reverse inclusion, take any f(z) € n(C) and divide it by
g(x) with remainder. We get f(z) = g(z)q(z) + r(z) where degr(z) <

deg g(x). Since g(x)q(z) = g(z) © q(x) € (g(x)) € 7(C), we have

r(z) = f(z) — g(x)q(z) € 7(C).
If r(x) # 0, then dividing r(x) by its leading term, we get a monic poly-
nomial in 7(C') whose degree is less than deg g(z), which is impossible.
Therefore, r(z) = 0 and hence f(z) = g(x)q(x) = g(x) ©q(z) € (g(z)).
Thus, we proved the reverse inclusion 7(C) C (g(z)) and therefore
condition (i).

Finally, let us prove (iii). Again, we can always divide 2™ —1 by g(x)
with remainder: 2" —1 = ¢g(z)Q(z)+ R(x) where deg(R(x)) < deg g(z).
Rewriting this equality as g(z)Q(z) = 2" — 1 — R(z) and taking the
remainders of both sides mod ™ — 1, we get g(x) ® Q(x) = —R(x)
and so —R(z) € (g(z)) C w(C). Since deg(—R(z)) < degg(z), as in
the proof of (i) this implies that R(z) = 0 and therefore g(z) divides
x™ — 1, as desired. O

Remark: The proof of (i) actually shows that if g(x) is the generator
for C, then
(i)’ m(C) is the set of all f(z) € R,, such that f(z) = g(z)u(x) for
some u(z) € F[z] (this is a product in F|z])
A priori (i)’ is a stronger condition than (i): if we take an arbitrary
element g(x) € R, the ideal (g(z)) can be strictly larger than the set

Mult(g(x)) ={f(z) € R, : f(z) = g(x)u(z) for some u(x) € F|x]}.

n—1 nfl)

For instance, take g(z) = . Then 1 € (g(z)) since x®z" ' = (z-x
mod (z" — 1) = 1, but 1 ¢ Mult(g(x)). However, it is true that
(g(x)) = Mult(g(x)) whenever g(x) is a divisor of ™ — 1.



