
Math 4310, Fall 2018. Solutions to the First Midterm.

2. Let (X, d) be a metric space and Y a subset of X. In this problem you
are NOT allowed to use that covering compactness is equivalent to sequential
compactness.

(a) (4 pts) Define what it means for Y to be covering compact (if you
are talking about open covers, define what it means).

(b) (3 pts) Prove that if Y is finite, then Y is covering compact.
(c) (5 pts) Now assume that the metric d on X is discrete (d(x, y) = 1

for all x 6= y). Prove that in this case the converse of (b) holds: if
Y is covering compact, then Y is finite.

Solution: (a) An open cover of Y is a collection {Uα} of open subsets of X
such that Y ⊆ ∪Uα.

We say that Y is covering compact if for any open cover {Uα} of Y there

exist finitely many indices α1, . . . , αn such that Y ⊆
n⋃
k=1

Uαk
.

Remark: Many exam papers seemed to be confusing of an open cover {Uα}
with the union of its elements ∪Uα. The union ∪Uα is just a subset of X.
There are many different open covers for which the union ∪Uα will be the
same (in fact, in the special case Y = X we will have ∪Uα = Y = X for
any open cover). An open cover itself is a COLLECTION of subsets of X;
in other words, an open cover is a subset of P(X), the power set of X.

(b) Since Y is finite, we can list of its elements: Y = {y1, . . . , yn}. Let
{Uα} be any open cover of Y . Since Y ⊆ ∪Uα, for each 1 ≤ k ≤ n there

exists an index αk such that yk ∈ Uαk
. But then Y =

n⋃
k=1

{yk} ⊆
n⋃
k=1

Uαk
, so

by definition Y is covering compact.

(c) We will prove (c) by contrapositive: if Y is infinite, then Y is not
covering compact. For each y ∈ Y let Uy = N1(y), the open ball of radius
1 around y. Then each Uy is open and Y ⊆ ∪y∈Y Uy (since y ∈ Uy for each
y), so the collection {Uy}y∈Y is an open cover of Y (what we said so far is
true for any metric space).

Now since the metric on X is discrete, for each y ∈ Y we have Uy = {y}.
Hence, if we pick any finitely many elements y1, . . . , yn ∈ Y , the union
n⋃
k=1

Uyk is finite and cannot contain Y . Thus, {Uy}y∈Y is an open cover of

Y without a finite subcover, so Y is not covering compact.

3. Let X = C[−1, 1] denote the space of continuous functions on [−1, 1].
Recall that the uniform metric dunif on X is defined by

dunif (u, v) = max
x∈[−1,1]

|u(x)− v(x)| ∀u, v ∈ C[−1, 1]
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and the integral metric dint on X is defined by

dint(u, v) =

1∫
−1

|u(x)− v(x)| dx ∀u, v ∈ C[−1, 1]

Define the function F : X → R by

F (u) = u(0),

that is, F maps every element element of X (which itself is a function
from [−1, 1] to R) to its value at 0. For instance, if u(x) = 2x + 1, then
F (u) = 2 · 0 + 1 = 1

(a) (6 pts) Prove that if we consider X as a metric space with uniform
metric and R with the standard metric, then F is continuous.

(b) (6 pts) Prove that if we consider X as a metric space with integral
metric and R with the standard metric, then F is not continuous at
0 (where 0 is the function which is identically zero).

Solution: (a) Take any u, v ∈ X. Then

dR(F (u), F (v)) = |F (u)−F (v)| = |u(0)−v(0)| ≤ max
x∈[−1,1]

|u(x)−v(x)| = dX(u, v).

Hence F is continuous by Problem 6(a) in HW#3.

(b) For each n ∈ N let un : [−1, 1] → R be the piecewise linear function
given by

un(x) =

{
0 if |x| > 1

n
1− n|x| if |x| ≤ 1

n

By construction un is continuous. The region under the graph of un is a
triangle with height 1 and width 2

n , so

dint(un,0) =

1∫
−1

|u(x)− 0| =
1∫
−1

u(x) =
1

n
.

Thus, dint(un,0)→ 0 as n→∞, so {un} converges to 0 in X.
On the other hand, for all n we have F (un) = un(0) = 1, so F (un) does

not converge to F (0). Hence F is not continuous at 0.

4.

(a) (3 pts) Give an example of a metric space X and a sequence {xn}
in X which is Cauchy but not convergent (no proof is needed)

(b) (3 pts) Let S be a subset of a metric space X. Then S is compact if
and only if S is closed (in X) and bounded. Prove (if this is true in
general) or give a counterexample.

(c) (3 pts) Let (X, d) be a metric space. Suppose that there exists
x0 ∈ X such that for any R > 0, the open ball NR(x0) contains only
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finitely many points. Is it true that X is countable? Prove or give a
counterexample.

(d) (3 pts) Let S be a subset of a metric space X. If S is countable, is it
always true that S (the closure of S in X) is also countable? Prove
or give a counterexample.

Solution: (a) For instance, we can take X = Q (with the standard metric)
and let {xn} be any sequence of rationals converging to

√
2. Another simple

example is X = (0, 1) and xn = 1
n .

(b) This is false. For instance, if we take X = S = (0, 1), then S closed
in X (any metric space is a closed subset of itself) and S is bounded, but S
is not compact (since it is not closed in R).

Another example: let S be any infinite set with discrete metric. Then S
is bounded and S is closed inside any metric space containing it (since any
convergent sequence in S is eventually constant by HW#3.5), but S is not
compact by Problem 2(c) on this exam.

(c) This is true. Take any x ∈ X. Then d(x, x0) is a real number, so
there exists n ∈ N such that d(x, x0) < n and hence x ∈ Nn(x0). Thus,
X = ∪∞n=1Nn(x0). By assumption each Nn(x0) is finite (hence countable),
so X = ∪∞n=1Nn(x0) is a countable union of countable sets and hence X
itself is countable by Lecture 3.

(d) This is false. For instance, let S = Q and X = R. Then S is countable,
but S = X is uncountable.


