Math 4310, Fall 2018. Solutions to the First Midterm.

2. Let (X, d) be a metric space and Y a subset of X. In this problem you
are NOT allowed to use that covering compactness is equivalent to sequential
compactness.

(a) (4 pts) Define what it means for Y to be covering compact (if you
are talking about open covers, define what it means).

(b) (3 pts) Prove that if Y is finite, then Y is covering compact.

(c) (b pts) Now assume that the metric d on X is discrete (d(z,y) =1
for all x # y). Prove that in this case the converse of (b) holds: if
Y is covering compact, then Y is finite.

Solution: (a) An open cover of Y is a collection {U,} of open subsets of X
such that Y C UU,.
We say that Y is covering compact if for any open cover {U,} of Y there
n

exist finitely many indices aq, ..., ay such that Y C |J Uy, .
k=1

Remark: Many exam papers seemed to be confusing of an open cover {U, }
with the union of its elements UU,. The union UU, is just a subset of X.
There are many different open covers for which the union UU, will be the
same (in fact, in the special case Y = X we will have UU, =Y = X for
any open cover). An open cover itself is a COLLECTION of subsets of X;
in other words, an open cover is a subset of P(X), the power set of X.

(b) Since Y is finite, we can list of its elements: Y = {y1,...,yn}. Let
{U4} be any open cover of Y. Since Y C UU,, for each 1 < k < n there

n n
exists an index oy, such that y, € Uy,,. But then Y = |J {yx} € U U,,, so
k=1 k=1

by definition Y is covering compact.

(c) We will prove (c) by contrapositive: if Y is infinite, then Y is not
covering compact. For each y € Y let U, = Ni(y), the open ball of radius
1 around y. Then each U, is open and Y C Uycy U, (since y € U, for each
y), so the collection {Uy},cy is an open cover of Y (what we said so far is
true for any metric space).

Now since the metric on X is discrete, for each y € Y we have U, = {y}.
Hence, if we pick any finitely many elements yq,...,y, € Y, the union

n

U Uy, is finite and cannot contain Y. Thus, {Uy},cy is an open cover of
k=1
Y without a finite subcover, so Y is not covering compact.

3. Let X = C[—1, 1] denote the space of continuous functions on [—1, 1].
Recall that the uniform metric dy,;y on X is defined by

dunif(ua v) = a:g[l—alxl] lu(x) —v(z)| Yu,ve C[-1,1]
1



2

and the integral metric d;,; on X is defined by
1
dint(u,v) = / lu(z) —v(x)|dx Yu,v € C[—1,1]
1

Define the function F': X — R by
F(u) = u(0),

that is, F' maps every element element of X (which itself is a function
from [—1,1] to R) to its value at 0. For instance, if u(z) = 2z + 1, then
Flu)=2-0+1=1
(a) (6 pts) Prove that if we consider X as a metric space with uniform
metric and R with the standard metric, then F is continuous.

(b) (6 pts) Prove that if we consider X as a metric space with integral
metric and R with the standard metric, then F' is not continuous at
0 (where 0 is the function which is identically zero).

Solution: (a) Take any u,v € X. Then

dr (F(u), F(v)) = [F(u)=F(v)] = [u(0)=v(0)] < B u(z)—v(z)| = dx (u, v).

Hence F' is continuous by Problem 6(a) in HW#3.

(b) For each n € N let u,, : [-1,1] — R be the piecewise linear function
given by
[0 if |z > 1
un() = { 1—nlz| if|z| <3

By construction u, is continuous. The region under the graph of u, is a
triangle with height 1 and width %, SO

1

ins(r,0) = [ Ju(e) ~ 0] = / u(z) =
1

-1

1
.

Thus, dint(up,0) — 0 as n — oo, so {u,} converges to 0 in X.
On the other hand, for all n we have F(u,) = un(0) = 1, so F'(uy) does
not converge to F'(0). Hence F' is not continuous at 0.

4.

(a) (3 pts) Give an example of a metric space X and a sequence {x,}
in X which is Cauchy but not convergent (no proof is needed)

(b) (3 pts) Let S be a subset of a metric space X. Then S is compact if
and only if S is closed (in X) and bounded. Prove (if this is true in
general) or give a counterexample.

(c) (3 pts) Let (X,d) be a metric space. Suppose that there exists
xo € X such that for any R > 0, the open ball Nr(z() contains only
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finitely many points. Is it true that X is countable? Prove or give a
counterexample.

(d) (3 pts) Let S be a subset of a metric space X. If S is countable, is it
always true that S (the closure of S in X) is also countable? Prove
or give a counterexample.

Solution: (a) For instance, we can take X = Q (with the standard metric)
and let {z,,} be any sequence of rationals converging to v/2. Another simple
1

example is X = (0,1) and z, = .

(b) This is false. For instance, if we take X = S = (0,1), then S closed
in X (any metric space is a closed subset of itself) and S is bounded, but S
is not compact (since it is not closed in R).

Another example: let S be any infinite set with discrete metric. Then S
is bounded and S is closed inside any metric space containing it (since any
convergent sequence in S is eventually constant by HW#3.5), but S is not
compact by Problem 2(c) on this exam.

(c) This is true. Take any x € X. Then d(x,zo) is a real number, so
there exists n € N such that d(x,z9) < n and hence = € N,(xg). Thus,
X = U2 Ny(x0). By assumption each N, (xo) is finite (hence countable),
so X = Up2 Np(xp) is a countable union of countable sets and hence X
itself is countable by Lecture 3.

(d) This is false. For instance, let S = Q and X = R. Then S is countable,
but S = X is uncountable.



