
Math 4310, Fall 2015. Solutions to the first midterm.

1.

(a) (3 pts) Give the definition of uniform continuity: Let (X, dX) and
(Y, dY ) be metric spaces. A function f : X → Y is called uniformly
continuous if ...

(b) (9 pts) Let (X, d) be a metric space, fix a ∈ X and define f : X → R
by

f(x) = d(x, a).

Prove that f is uniformly continuous (as usual, the metric on R is
standard).

Solution: (b) By definition we need to show that for every ε > 0 there
exists δ > 0 such that

d(x, y) < δ implies |f(x)− f(y)| < ε for all x, y ∈ X (∗ ∗ ∗)
We will show that (***) holds with δ = ε.

Indeed, take any x, y ∈ X. Then d(x, a) ≤ d(x, y) + d(y, a) and d(y, a) ≤
d(y, x) + d(x, a) = d(x, y) + d(x, a). Hence d(x, a) − d(y, a) ≤ d(x, y) and
d(y, a)− d(x, a) ≤ d(x, y). Therefore,

|f(x)−f(y)| = |d(x, a)−d(y, a)| = max{d(x, a)−d(y, a), d(y, a)−d(x, a)} ≤ d(x, y).

Hence d(x, y) < ε implies |f(x)− f(y)| < ε, so (***) holds with δ = ε.

2. Let X be a metric space.

(a) (3 pts) Let Y be a subset of X. Define what it means for Y to be
compact (if you are talking about open covers, define what it means).

(b) (9 pts) Let {xn} be a convergent sequence in X and x = lim
n→∞

xn.

Prove that the set {xn}n∈N∪{x} is compact. You are not allowed to
use that sequential compactness implies compactness. Hint: There
was a similar homework problem.

Solution: (a) An open cover of Y is a collection of open subsets {Uα} of X
such that Y ⊆ ∪Uα. The set Y is called compact if for any open cover {Uα}
of Y there exist finitely many indices α1, . . . , αn such that Y ⊆

⋃n
k=1 Uαk

.
(b) Let Y = {xn : n ∈ N} ∪ {x}, and let {Uα} be an open cover of Y . We

know that x ∈ Uβ for some β. Since Uβ is open in X, there is ε > 0 such
that Nε(x) ⊆ Uβ. Since xn → x, there exists M ∈ N such that xn ∈ Nε(x)
for all n ≥M .

It follows that Uβ contains x as well as xn for all n ≥ M , that is Uβ
contains all but finitely many elements of Y (the only elements of Y which
possibly lie outside of Y are x1, . . . , xM−1). For each 1 ≤ i ≤M − 1 choose

αi such that xi ∈ Uαi . Then by construction Y ⊆ Uβ ∪ (∪M−1i=1 Uαi), so we
constructed a finite subcover of {Uα}. Therefore, Y is compact.

3. Let X and Y be metric spaces, f : X → Y a continuous function and
S a subset of X.
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(a) (8 pts) Prove that

f(S) ⊆ f(S)

(where S is the closure of S in X and f(S) is the closure of f(S) in
Y ). Hint: Do one of the following:

(i) use sequential characterizations of closures and continuity
(ii) use characterizations of closures and continuity in terms of closed

sets or
(iii) assume that there exists y ∈ f(S) \ f(S) and reach a contradic-

tion using the ε-δ definition of continuity.
(b) (4 pts) Give an example where

f(S) 6= f(S)

and briefly explain why your example has the required property.

Solution: (a) First solution (using hint (i)): Take any x ∈ S. By Lemma
6.2 (sequential characterization of closures) there exists a sequence {sn}
in S such that sn → x. Since f is continuous at x, by Theorem 6.3 f(sn)
converges to f(x). Since f(sn) ∈ f(S), applying Lemma 6.2 again (this time

in the opposite direction) we deduce that f(x) = limn→∞ f(sn) ∈ f(S).

Thus, we showed that f(x) ∈ f(S) for every x ∈ S, whence f(S) ⊆ f(S).

(b) Second solution (using hint (ii)): We know that f(S) is closed (the

closure of any set is closed). Since f is continuous, f−1(f(S)) is closed. Since

f(S) ⊆ f(S), we have S ⊆ f−1(f(S)). Since the closure of S is contained
in any closed subset containing S (Theorem 5.1(3)), we conclude that S ⊆
f−1(f(S)), which by the definition of preimage means that f(S) ⊆ f(S).

(c) Third solution (using hint (iii)): Proof by contradiction. Suppose

that there exists y ∈ f(S) \ f(S). Thus, y = f(x) for some x ∈ S and

y 6∈ f(S). The latter condition means that there exists ε > 0 such that
Nε(y) ∩ f(S) = ∅.

Since f is continuous at x, there exists δ > 0 such that f(Nδ(x)) ⊆
Nε(f(x)) = Nε(y). Thus, f(Nδ(x)) ∩ f(S) = ∅. This clearly implies that
Nδ(x)∩S = ∅, hence by definition x 6∈ S, contrary to our initial hypothesis.

(b) We give two types of examples.
Example 1: Let X = Y = R with standard metric, let S = R and

f : X → Y any continuous function with non-closed image (for instance,
f(x) = 1

1+x2
whose image is (0, 1]). Then S = S = R, so f(S) = f(R) while

f(S) = f(R) 6= f(R) since f(R) is not closed.

Example 2: Let Y = R with standard metric, let X be any non-closed
subset of R (also with standard metric), let S = X and let f : X → Y by
the identity function (f(x) = x for all x ∈ X). Then S = S = X (since

we are taking the closure in X, not in R), so f(S) = X while f(S) is the
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closure of X in R which is strictly larger than X (since X is not closed in
R).

4. For each of the following statements determine whether it is true (in all
cases) or false (in at least one case). If the statement is true, briefly explain
why; if not, give a counterexample (and prove that it is a counterexample).
An answer (correct or incorrect) without any explanation will not receive
any credit.

(a) (3 pts) Every subset of R (with usual metric) is open or closed.
(b) (3 pts) If X is a metric space and S is a finite subset of X, then S

is closed.
(c) (3 pts) Let {Cn}∞n=1 be a countable collection of closed subsets of R,

and let Irr be the set of all irrational numbers in R. Then

∩∞n=1Cn 6= Irr.

(d) (3 pts) Let {Un}∞n=1 be a countable collection of open subsets of R.
Then

∩∞n=1Un 6= Irr.

Solution: (a) False. For instance, any half-open interval (a, b] with a < b
is neither open nor closed.

(b) True. First argument: We know that points (subsets with one ele-
ment) are closed (for instance, since every x ∈ X is equal to B0(x), the closed
ball of radius 0 around x, and closed balls are closed by Homework#3.) Since
every finite set is a union of finitely many points and finite unions of closed
sets are closed, it follows that finite sets are closed.

Second argument. Let S = {s1, . . . , sn}. We will show that every x 6∈ S
is not a contact point of S (whence S is closed). Take any x 6∈ S, let
δk = d(x, sk) for 1 ≤ k ≤ n and δ = min{δ1, . . . , δn}. Since each sk 6= x,
each δk > 0, whence δ > 0. By definition of δ we have Nδ(x) ∩ S = ∅, so x
is not a contact point of S.

Third argument: If S is finite, then any open cover of S clearly has a
finite subcover (for each s ∈ S we just need to pick one element of the cover
which contains s). Thus, by definition S is compact, whence S is closed in
X by Theorem 8.4.

(c) True. The set ∩∞n=1Cn is closed since intersection of any collection of
closed sets is closed (the fact that the intersection is countable is not essential
here). On the other hand, Irr is not closed since Q is not open (which,
in turn, holds since any non-empty open set must contain a non-empty
open interval and any non-empty open interval must contain an irrational
number).

(d) False, that is, there exists a countable collection of open subsets
{Un}∞n=1 such that ∩Un = Irr.
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We know that Q is countable, so it can be enumerated: Q = {q1, q2, . . .}.
Let Un = R \ {qn} = (−∞, qn) ∪ (qn,+∞). Clearly, Un is open and ∩Un =
R \ ∪∞n=1{qn} = R \Q = Irr, as desired.


