Solutions to the First Midterm.
Problem 1: Let A and B be non-empty subsets of R bounded from

above. For each of the following statements determine whether it is true (in
general) or false (in at least one case). If the statement is true, prove it; if

false, give a counterexample.

(i) sup(A U B) = max{sup(A),sup(B)}
(ii) sup(A N B) = min{sup(A), sup(B)} provided AN B # ()
(iii) sup(A+B) = sup(A)+sup(B) where A+B = {a+b:a € A, b e B}.

Solution: (i) True. We will first show that sup(AUB) < max{sup(A),sup(B)}
and then that max{sup(A),sup(B)} < sup(4A U B).

Take any 2 € AUB. Then x € Aor x € B, so x < sup(4) or z <
sup(B); in either case, x < max{sup(A),sup(B)}. Thus, sup(A U B) <
max{sup(A),sup(B)}.

On the other hand, sup(A U B) is an upper bound for A U B, hence it
is an upper bound for both A and B. By the definition of the least upper
bound we have sup(A) < sup(A U B) and sup(B) < sup(A U B), whence
max{sup(A),sup(B)} < sup(A U B).

(ii) False. For instance, let A = {0,1}, B = {0,2} (both two element
sets). Then AN B = {0}, so sup(4A N B) = 0, while min{sup(A),sup(B)} =
min{1,2} = 1.

(iii) True. For any a € A and b € B we have a + b < sup(A) + sup(B), so
sup(A + B) < sup(A) + sup(B). To prove the reverse inequality, sup(A) +
sup(B) < sup(A+ B), we will show that sup(A) +sup(B) —e < sup(A+ B)
for any € > 0.

So take € > 0. Since sup(A) is the least upper bound for A, there exists
a € A such that sup(A) — § < a, and similarly there exists b € B such that
sup(B)—§ < b. Adding those two inequalities, we get sup(A)+sup(B) —¢ <
a+ b < sup(A) + sup(B), as desired.

Problem 2: In this problem you are not allowed to refer to the results
of homework problems. Let Y be an infinite subset of [0, 1] such that the
intersection Y N (4, 1] is finite for every ¢ > 0. (Note: {1,1/2,1/3,...} is an

example of such subset).

(a) (4 pts) Prove that Y is countable.

(b) (8 pts) Prove that Y is compact if and only if 0 € Y.
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Solution: (a) For each n € Nlet ¥, = Y N (%,1]; thus by assumption
each Y,, is finite. Since Unen(2,1] = (0,1], the set Y N (0,1] = UpenYs, is a
countable union of finite sets, hence countable. Finally, Y is equal to either
Y N (0,1] or (Y N (0,1]) U{0}, so Y is also countable.

(b) We give two solutions — one using the definition of compactness and
one using Heine-Borel theorem.

Solution 1: “=” We argue by contradiction. Assume that Y is compact,
but 0 € Y. Then Y = U,enY, where Y,, = Y N (%,1]. Since Y, also
equals Y N (1,2), each Y;, is open in Y, so {Y;,} is an open cover of Y. By
compactness, it must have a finite subcover Y,,,,...,Y,,. But each Y, is
finite, so this would force Y to be finite as well, contrary to our hypothesis.

“«<” Assume that 0 € Y, and let {U,} be any open cover of Y. Then there
exists (8 such that 0 € Ug, and since Ug is open in Y, it must contain Y'N[0, €)
for some € > 0. If we now let 6 = /2, we get that Y = UgU (Y N (4, 1]). By
assumption Y N (4, 1] is finite. If y1,..., vy are the elements of Y N (4, 1],
choose indices ax, ..., a, such that y; € U,,. Then Y = (U",U,,) UUg, so
we found a finite subcover. Theferore, Y is compact.

Solution 2: Y is always bounded, being a subset of [0, 1], so by Heine-
Borel theorem Y is compact <= it is closed ( <= Y contains all its
cluster points). We will show that 0 is always a cluster point of Y, and
there are no other cluster points. This clearly implies the assertion of the

problem.

(i) Proving that 0 is a cluster point of Y. We need to show that for any
e > 0, the set N.(0) = (—¢,¢) contains a point of Y other than 0. Note that
Y = (YN (-e¢)U (Y N(51]). Since by assumption Y is infinite while
Y N(5,1] is finite, Y N(—¢,¢) must be infinite; in particular, it must contain
a point other than 0. Thus, 0 is indeed a cluster point of Y.

(ii) Proving that = # 0 is not a cluster point of Y. Since Y C [0, 1]
and [0,1] is closed, it is clear that any x outside of [0,1] is not a cluster
point. So, suppose that = € (0,1], and let U = Nz(z) = (5, 32). Then
Y NU =Y N(3,1] is finite by assumption, so in particular Y N U contains
only finitely many points of Y different from z. If y1,..., yr are those points
and § = min{|x—y;|}¥_, (which is positive), then the set Ns(z) = (v—6, 2+6)
does not contain any points of Y other than x, so x cannot be a cluster point
of Y.



Problem 3:

(a) (4 pts) Let (Y, D) be a metric space. Prove that for any a,b € Y,
with a # b, there exists € > 0 such that the open balls N.(a) and
N.(b) have empty intersection.

(b) (8 pts) Let (X,d) and (Y, D) be metric spaces, let f,g: X — Y be

continuous functions, and let

K={reX:f)=g)
Prove that K is a closed subset of X. Note: (a) may or may not

be useful depending on your approach.

Solution: (a) Let ¢ = @. If there exists z € N:(a) N Nc(b), then

d(xz,a) < € and d(z,b) < e, whence d(z,a) + d(z,b) < 2¢ = d(a,b), which
contradicts the triangle inequality. Therefore, N.(a) N N¢(b) = 0.

(b) Solution 1: (this solution does not use the result of (a)). We will
prove that K is closed by showing that if a sequence {k,} in K converges
to some z € X, then x € K. This follows immediately from the sequential
characterization of continuity.

Indeed, suppose k, — x, with k, € K. Since f and g are continuous, we
must have f(k,) — f(z) and g(k,) — g(z). Since k,, € K for all n, we have
f(kyn) = g(kp) by definition of K. Thus the sequences {f(k,)} and {g(k,)}
coincide, hence so do their limits: f(xz) = g(z). Therefore, x € K.

Solution 2: (this solution does use (a)). We will argue that the com-
plement X \ K is open. Take any z € X \ K. Then f(z) # g(x), so by
(a) there exists ¢ > 0 such that NY (f(x)) N NY (g(z)) = 0. Since f and g
are continuous, there exist d1,d2 > 0 such that f(Né)f(a:)) C NY(f(x)) and
g(NE () € NY (g(x).

Now let § = min{é;,d2}. Then N;¥(x) is contained in both N(S)f(a:) and
NE (@), 50 f(NF (2))Ng(NX (2)) € NY (f(2))NNY (9(x)) = 0. In particular,
this means that for any z € N (z)) we have f(z) # g(z), so z € X \ K.
Thus, Nif(z) € X \ K, so X \ K is open, as desired.

Problem 4: Let (X,d) be an ultrametric space. Recall that this means
that (X,d) is a metric space satisfying a stronger version of the triangle

inequality:
d(z,z) < max{d(z,y),d(y, z)} for all z,y,z € X.
(a) (5 pts) Fix a € X and € > 0, and let
C:(a) = X\ Ne(a) ={z € X : d(z,a) > ¢}.

Prove that C.(a) is open in X.



(b) (4 pts) Use (a) to prove that if |X| > 2, then X is disconnected.
Moreover, deduce that any subset Y of X, with |Y| > 2, is discon-
nected.

(c) (3 pts) Let R denote reals with standard metric. Now use (b) to
prove that any continuous function f : R — X is constant (that is,
there exists z € X such that f(¢) =z for all ¢ € R).

Solution: (a) Again we will give two solutions:

Solution 1: Let z € C.(a), so that d(z,a) > . We will show that
N:(z) C C.(a) (which would imply that C.(a) is open). Indeed, take any
z € Ne(x), so d(x,z) < e. By ultrametric inequality we have ¢ < d(z,a) <
max{d(x, z),d(z,a)}. Since d(x,z) < e, this forces d(z,a) > ¢, whence
z € C(a), as desired.

Solution 2: Here we will show that N.(a) = X \ Cz(a) is closed. Take
any sequence {z,} in N:(a), and suppose that x,, — = for some x € X. We
need to show that z € N.(a).

Since x,, — x, we have d(x,, z) — 0, so in particular d(x,,z) < e for some
n, and by assumption d(z,,a) < € (for all n). Therefore, by ultrametric
inequality we have d(z,a) < max{d(z,,a),d(z,,x)} < &, so z € N.(a), as
desired.

(b) Since |X| > 2, we can find two distinct points z,a € X. Let ¢ =
d(xz,a). Then a € N.(a) and x € C.(a), so N:(a) and C¢(a) are both non-
empty. Since N¢(a) is always open and C.(a) is open by (a), we deduce that
X is a disjoint union of two non-empty open sets, so X is disconnected.

If Y is any subset of X with |Y| > 2, then Y itself is an ultrametric space,
so applying the result of the previous paragraph to Y, we deduce that Y is

also disconnected.

(c) Since R is connected and f is continuous, f(R) must also be connected.
Since f(R) C X and X is disconnected, part (b) implies that |f(R)| = 1,

which is equivalent to saying that f is constant.



