Solutions to the First Midterm.

Problem 1: Let A and B be non-empty subsets of \mathbb{R} bounded from above. For each of the following statements determine whether it is true (in general) or false (in at least one case). If the statement is true, prove it; if false, give a counterexample.

- (i) $\sup(A \cup B) = \max\{\sup(A), \sup(B)\}\$
- (ii) $\sup(A \cap B) = \min\{\sup(A), \sup(B)\}\$ provided $A \cap B \neq \emptyset$
- (iii) $\sup(A+B) = \sup(A) + \sup(B)$ where $A+B = \{a+b : a \in A, b \in B\}.$

Solution: (i) True. We will first show that $\sup(A \cup B) \le \max\{\sup(A), \sup(B)\}\$ and then that $\max{\sup(A), \sup(B)\}\leq \sup(A\cup B)$.

Take any $x \in A \cup B$. Then $x \in A$ or $x \in B$, so $x \leq \sup(A)$ or $x \leq$ sup(B); in either case, $x \le \max\{\sup(A), \sup(B)\}\$. Thus, $\sup(A \cup B) \le$ $\max{\sup(A), \sup(B)}$.

On the other hand, $\sup(A \cup B)$ is an upper bound for $A \cup B$, hence it is an upper bound for both A and B . By the definition of the least upper bound we have $\sup(A) \leq \sup(A \cup B)$ and $\sup(B) \leq \sup(A \cup B)$, whence $\max{\sup(A), \sup(B)} \leq \sup(A \cup B)$.

(ii) False. For instance, let $A = \{0, 1\}$, $B = \{0, 2\}$ (both two element sets). Then $A \cap B = \{0\}$, so $\sup(A \cap B) = 0$, while $\min\{\sup(A), \sup(B)\}$ $min{1, 2} = 1.$

(iii) True. For any $a \in A$ and $b \in B$ we have $a + b \le \sup(A) + \sup(B)$, so $\sup(A + B) \leq \sup(A) + \sup(B)$. To prove the reverse inequality, $\sup(A)$ + $\sup(B) \leq \sup(A+B)$, we will show that $\sup(A) + \sup(B) - \varepsilon < \sup(A+B)$ for any $\varepsilon > 0$.

So take $\varepsilon > 0$. Since sup(A) is the least upper bound for A, there exists $a \in A$ such that $\sup(A) - \frac{\varepsilon}{2} < a$, and similarly there exists $b \in B$ such that $\sup(B)-\frac{\varepsilon}{2} < b$. Adding those two inequalities, we get $\sup(A)+\sup(B)-\varepsilon <$ $a + b \leq \sup(A) + \sup(B)$, as desired.

Problem 2: In this problem you are not allowed to refer to the results of homework problems. Let Y be an infinite subset of $[0, 1]$ such that the intersection $Y \cap (\delta, 1]$ is finite for every $\delta > 0$. (Note: $\{1, 1/2, 1/3, \ldots\}$ is an example of such subset).

- (a) (4 pts) Prove that Y is countable.
- (b) (8 pts) Prove that Y is compact if and only if $0 \in Y$.

Solution: (a) For each $n \in \mathbb{N}$ let $Y_n = Y \cap \left(\frac{1}{n}\right)$ $\frac{1}{n}, 1$; thus by assumption each Y_n is finite. Since $\cup_{n\in\mathbb{N}}(\frac{1}{n})$ $(\frac{1}{n}, 1] = (0, 1],$ the set $Y \cap (0, 1] = \bigcup_{n \in \mathbb{N}} Y_n$ is a countable union of finite sets, hence countable. Finally, Y is equal to either $Y \cap (0,1]$ or $(Y \cap (0,1]) \cup \{0\}$, so Y is also countable.

(b) We give two solutions – one using the definition of compactness and one using Heine-Borel theorem.

Solution 1: " \Rightarrow " We argue by contradiction. Assume that Y is compact, but $0 \notin Y$. Then $Y = \bigcup_{n \in \mathbb{N}} Y_n$ where $Y_n = Y \cap \left(\frac{1}{n}\right)$ $\frac{1}{n}, 1$. Since Y_n also equals $Y \cap (\frac{1}{n})$ $\frac{1}{n}$, 2), each Y_n is open in Y, so $\{Y_n\}$ is an open cover of Y. By compactness, it must have a finite subcover Y_{n_1}, \ldots, Y_{n_k} . But each Y_{n_i} is finite, so this would force Y to be finite as well, contrary to our hypothesis.

" \Leftarrow " Assume that $0 \in Y$, and let $\{U_{\alpha}\}\$ be any open cover of Y. Then there exists β such that $0 \in U_\beta$, and since U_β is open in Y, it must contain $Y \cap [0, \varepsilon)$ for some $\varepsilon > 0$. If we now let $\delta = \varepsilon/2$, we get that $Y = U_\beta \cup (Y \cap (\delta, 1])$. By assumption $Y \cap (\delta, 1]$ is finite. If y_1, \ldots, y_m are the elements of $Y \cap (\delta, 1]$, choose indices $\alpha_1, \ldots, \alpha_m$ such that $y_i \in U_{\alpha_i}$. Then $Y = (\cup_{i=1}^m U_{\alpha_i}) \cup U_{\beta}$, so we found a finite subcover. Theferore, Y is compact.

Solution 2: Y is always bounded, being a subset of $[0, 1]$, so by Heine-Borel theorem Y is compact \iff it is closed (\iff Y contains all its cluster points). We will show that 0 is always a cluster point of Y , and there are no other cluster points. This clearly implies the assertion of the problem.

(i) Proving that 0 is a cluster point of Y. We need to show that for any $\varepsilon > 0$, the set $N_{\varepsilon}(0) = (-\varepsilon, \varepsilon)$ contains a point of Y other than 0. Note that $Y = (Y \cap (-\varepsilon, \varepsilon)) \cup (Y \cap (\frac{\varepsilon}{2})$ $(\frac{\varepsilon}{2}, 1]$). Since by assumption Y is infinite while $Y \cap (\frac{\varepsilon}{2})$ $\frac{\varepsilon}{2}$, 1] is finite, $Y \cap (-\varepsilon, \varepsilon)$ must be infinite; in particular, it must contain a point other than 0. Thus, 0 is indeed a cluster point of Y .

(ii) Proving that $x \neq 0$ is not a cluster point of Y. Since $Y \subseteq [0,1]$ and $[0, 1]$ is closed, it is clear that any x outside of $[0, 1]$ is not a cluster point. So, suppose that $x \in (0,1]$, and let $U = N_{\frac{x}{2}}(x) = (\frac{x}{2}, \frac{3x}{2})$ $\frac{3x}{2}$). Then $Y \cap U = Y \cap \left(\frac{x}{2}\right)$ $\frac{x}{2}$, 1] is finite by assumption, so in particular $Y \cap U$ contains only finitely many points of Y different from x. If y_1, \ldots, y_k are those points and $\delta = \min\{|x - y_i|\}_{i=1}^k$ (which is positive), then the set $N_\delta(x) = (x - \delta, x + \delta)$ does not contain any points of Y other than x , so x cannot be a cluster point of Y .

Problem 3:

- (a) (4 pts) Let (Y, D) be a metric space. Prove that for any $a, b \in Y$, with $a \neq b$, there exists $\varepsilon > 0$ such that the open balls $N_{\varepsilon}(a)$ and $N_{\varepsilon}(b)$ have empty intersection.
- (b) (8 pts) Let (X, d) and (Y, D) be metric spaces, let $f, g: X \to Y$ be continuous functions, and let

$$
K = \{ x \in X : f(x) = g(x) \}.
$$

Prove that K is a closed subset of X. Note: (a) may or may not be useful depending on your approach.

Solution: (a) Let $\varepsilon = \frac{d(a,b)}{2}$ $\frac{a, b)}{2}$. If there exists $x \in N_{\varepsilon}(a) \cap N_{\varepsilon}(b)$, then $d(x, a) < \varepsilon$ and $d(x, b) < \varepsilon$, whence $d(x, a) + d(x, b) < 2\varepsilon = d(a, b)$, which contradicts the triangle inequality. Therefore, $N_{\varepsilon}(a) \cap N_{\varepsilon}(b) = \emptyset$.

(b) Solution 1: (this solution does not use the result of (a)). We will prove that K is closed by showing that if a sequence $\{k_n\}$ in K converges to some $x \in X$, then $x \in K$. This follows immediately from the sequential characterization of continuity.

Indeed, suppose $k_n \to x$, with $k_n \in K$. Since f and g are continuous, we must have $f(k_n) \to f(x)$ and $g(k_n) \to g(x)$. Since $k_n \in K$ for all n, we have $f(k_n) = g(k_n)$ by definition of K. Thus the sequences $\{f(k_n)\}\$ and $\{g(k_n)\}\$ coincide, hence so do their limits: $f(x) = g(x)$. Therefore, $x \in K$.

Solution 2: (this solution does use (a)). We will argue that the complement $X \setminus K$ is open. Take any $x \in X \setminus K$. Then $f(x) \neq g(x)$, so by (a) there exists $\varepsilon > 0$ such that $N_{\varepsilon}^{Y}(f(x)) \cap N_{\varepsilon}^{Y}(g(x)) = \emptyset$. Since f and g are continuous, there exist $\delta_1, \delta_2 > 0$ such that $f(N_{\delta_1}^X(x)) \subseteq N_{\varepsilon}^Y(f(x))$ and $g(N_{\delta_2}^X(x)) \subseteq N_{\varepsilon}^Y(g(x)).$

Now let $\delta = \min\{\delta_1, \delta_2\}$. Then $N_{\delta}^X(x)$ is contained in both $N_{\delta_1}^X(x)$ and $N_{\delta_2}^X(x)$, so $f(N_{\delta}^X(x)) \cap g(N_{\delta}^X(x)) \subseteq N_{\epsilon}^Y(f(x)) \cap N_{\epsilon}^Y(g(x)) = \emptyset$. In particular, this means that for any $z \in N_{\delta}^X(x)$ we have $f(z) \neq g(z)$, so $z \in X \setminus K$. Thus, $N_{\delta}^{X}(x) \subseteq X \setminus K$, so $X \setminus K$ is open, as desired.

Problem 4: Let (X, d) be an ultrametric space. Recall that this means that (X, d) is a metric space satisfying a stronger version of the triangle inequality:

 $d(x, z) \le \max\{d(x, y), d(y, z)\}\$ for all $x, y, z \in X$.

(a) (5 pts) Fix $a \in X$ and $\varepsilon > 0$, and let

 $C_{\varepsilon}(a) = X \setminus N_{\varepsilon}(a) = \{x \in X : d(x, a) \geq \varepsilon\}.$

Prove that $C_{\varepsilon}(a)$ is open in X.

- (b) (4 pts) Use (a) to prove that if $|X| \geq 2$, then X is disconnected. Moreover, deduce that any subset Y of X, with $|Y| > 2$, is disconnected.
- (c) (3 pts) Let R denote reals with standard metric. Now use (b) to prove that any continuous function $f : \mathbb{R} \to X$ is constant (that is, there exists $x \in X$ such that $f(t) = x$ for all $t \in \mathbb{R}$).

Solution: (a) Again we will give two solutions:

Solution 1: Let $x \in C_{\epsilon}(a)$, so that $d(x,a) \geq \epsilon$. We will show that $N_{\varepsilon}(x) \subseteq C_{\varepsilon}(a)$ (which would imply that $C_{\varepsilon}(a)$ is open). Indeed, take any $z \in N_{\varepsilon}(x)$, so $d(x, z) < \varepsilon$. By ultrametric inequality we have $\varepsilon \leq d(x, a) \leq$ $\max\{d(x, z), d(z, a)\}.$ Since $d(x, z) < \varepsilon$, this forces $d(z, a) \geq \varepsilon$, whence $z \in C_{\varepsilon}(a)$, as desired.

Solution 2: Here we will show that $N_{\varepsilon}(a) = X \setminus C_{\varepsilon}(a)$ is closed. Take any sequence $\{x_n\}$ in $N_{\varepsilon}(a)$, and suppose that $x_n \to x$ for some $x \in X$. We need to show that $x \in N_{\varepsilon}(a)$.

Since $x_n \to x$, we have $d(x_n, x) \to 0$, so in particular $d(x_n, x) < \varepsilon$ for some n, and by assumption $d(x_n, a) < \varepsilon$ (for all n). Therefore, by ultrametric inequality we have $d(x, a) \leq \max\{d(x_n, a), d(x_n, x)\} < \varepsilon$, so $x \in N_{\varepsilon}(a)$, as desired.

(b) Since $|X| \geq 2$, we can find two distinct points $x, a \in X$. Let $\varepsilon =$ $d(x, a)$. Then $a \in N_{\varepsilon}(a)$ and $x \in C_{\varepsilon}(a)$, so $N_{\varepsilon}(a)$ and $C_{\varepsilon}(a)$ are both nonempty. Since $N_{\varepsilon}(a)$ is always open and $C_{\varepsilon}(a)$ is open by (a), we deduce that X is a disjoint union of two non-empty open sets, so X is disconnected.

If Y is any subset of X with $|Y| \geq 2$, then Y itself is an ultrametric space, so applying the result of the previous paragraph to Y , we deduce that Y is also disconnected.

(c) Since $\mathbb R$ is connected and f is continuous, $f(\mathbb R)$ must also be connected. Since $f(\mathbb{R}) \subseteq X$ and X is disconnected, part (b) implies that $|f(\mathbb{R})| = 1$, which is equivalent to saying that f is constant.