
Solutions to the First Midterm.

Problem 1: Let A and B be non-empty subsets of R bounded from

above. For each of the following statements determine whether it is true (in

general) or false (in at least one case). If the statement is true, prove it; if

false, give a counterexample.

(i) sup(A ∪B) = max{sup(A), sup(B)}
(ii) sup(A ∩B) = min{sup(A), sup(B)} provided A ∩B 6= ∅
(iii) sup(A+B) = sup(A)+sup(B) where A+B = {a+b : a ∈ A, b ∈ B}.

Solution: (i) True. We will first show that sup(A∪B) ≤ max{sup(A), sup(B)}
and then that max{sup(A), sup(B)} ≤ sup(A ∪B).

Take any x ∈ A ∪ B. Then x ∈ A or x ∈ B, so x ≤ sup(A) or x ≤
sup(B); in either case, x ≤ max{sup(A), sup(B)}. Thus, sup(A ∪ B) ≤
max{sup(A), sup(B)}.

On the other hand, sup(A ∪ B) is an upper bound for A ∪ B, hence it

is an upper bound for both A and B. By the definition of the least upper

bound we have sup(A) ≤ sup(A ∪ B) and sup(B) ≤ sup(A ∪ B), whence

max{sup(A), sup(B)} ≤ sup(A ∪B).

(ii) False. For instance, let A = {0, 1}, B = {0, 2} (both two element

sets). Then A ∩B = {0}, so sup(A ∩B) = 0, while min{sup(A), sup(B)} =

min{1, 2} = 1.

(iii) True. For any a ∈ A and b ∈ B we have a+ b ≤ sup(A) + sup(B), so

sup(A + B) ≤ sup(A) + sup(B). To prove the reverse inequality, sup(A) +

sup(B) ≤ sup(A+B), we will show that sup(A) + sup(B)− ε < sup(A+B)

for any ε > 0.

So take ε > 0. Since sup(A) is the least upper bound for A, there exists

a ∈ A such that sup(A)− ε
2 < a, and similarly there exists b ∈ B such that

sup(B)− ε
2 < b. Adding those two inequalities, we get sup(A)+sup(B)−ε <

a+ b ≤ sup(A) + sup(B), as desired.

Problem 2: In this problem you are not allowed to refer to the results

of homework problems. Let Y be an infinite subset of [0, 1] such that the

intersection Y ∩ (δ, 1] is finite for every δ > 0. (Note: {1, 1/2, 1/3, . . .} is an

example of such subset).

(a) (4 pts) Prove that Y is countable.

(b) (8 pts) Prove that Y is compact if and only if 0 ∈ Y .
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Solution: (a) For each n ∈ N let Yn = Y ∩ ( 1
n , 1]; thus by assumption

each Yn is finite. Since ∪n∈N( 1
n , 1] = (0, 1], the set Y ∩ (0, 1] = ∪n∈NYn is a

countable union of finite sets, hence countable. Finally, Y is equal to either

Y ∩ (0, 1] or (Y ∩ (0, 1]) ∪ {0}, so Y is also countable.

(b) We give two solutions – one using the definition of compactness and

one using Heine-Borel theorem.

Solution 1: “⇒” We argue by contradiction. Assume that Y is compact,

but 0 6∈ Y . Then Y = ∪n∈NYn where Yn = Y ∩ ( 1
n , 1]. Since Yn also

equals Y ∩ ( 1
n , 2), each Yn is open in Y , so {Yn} is an open cover of Y . By

compactness, it must have a finite subcover Yn1 , . . . , Ynk
. But each Yni is

finite, so this would force Y to be finite as well, contrary to our hypothesis.

“⇐” Assume that 0 ∈ Y , and let {Uα} be any open cover of Y . Then there

exists β such that 0 ∈ Uβ, and since Uβ is open in Y , it must contain Y ∩[0, ε)

for some ε > 0. If we now let δ = ε/2, we get that Y = Uβ ∪ (Y ∩ (δ, 1]). By

assumption Y ∩ (δ, 1] is finite. If y1, . . . , ym are the elements of Y ∩ (δ, 1],

choose indices α1, . . . , αm such that yi ∈ Uαi . Then Y = (∪mi=1Uαi) ∪ Uβ, so

we found a finite subcover. Theferore, Y is compact.

Solution 2: Y is always bounded, being a subset of [0, 1], so by Heine-

Borel theorem Y is compact ⇐⇒ it is closed ( ⇐⇒ Y contains all its

cluster points). We will show that 0 is always a cluster point of Y , and

there are no other cluster points. This clearly implies the assertion of the

problem.

(i) Proving that 0 is a cluster point of Y . We need to show that for any

ε > 0, the set Nε(0) = (−ε, ε) contains a point of Y other than 0. Note that

Y = (Y ∩ (−ε, ε)) ∪ (Y ∩ ( ε2 , 1]). Since by assumption Y is infinite while

Y ∩ ( ε2 , 1] is finite, Y ∩ (−ε, ε) must be infinite; in particular, it must contain

a point other than 0. Thus, 0 is indeed a cluster point of Y .

(ii) Proving that x 6= 0 is not a cluster point of Y . Since Y ⊆ [0, 1]

and [0, 1] is closed, it is clear that any x outside of [0, 1] is not a cluster

point. So, suppose that x ∈ (0, 1], and let U = Nx
2
(x) = (x2 ,

3x
2 ). Then

Y ∩ U = Y ∩ (x2 , 1] is finite by assumption, so in particular Y ∩ U contains

only finitely many points of Y different from x. If y1, . . . , yk are those points

and δ = min{|x−yi|}ki=1 (which is positive), then the setNδ(x) = (x−δ, x+δ)

does not contain any points of Y other than x, so x cannot be a cluster point

of Y .
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Problem 3:

(a) (4 pts) Let (Y,D) be a metric space. Prove that for any a, b ∈ Y ,

with a 6= b, there exists ε > 0 such that the open balls Nε(a) and

Nε(b) have empty intersection.

(b) (8 pts) Let (X, d) and (Y,D) be metric spaces, let f, g : X → Y be

continuous functions, and let

K = {x ∈ X : f(x) = g(x)}.

Prove that K is a closed subset of X. Note: (a) may or may not

be useful depending on your approach.

Solution: (a) Let ε = d(a,b)
2 . If there exists x ∈ Nε(a) ∩ Nε(b), then

d(x, a) < ε and d(x, b) < ε, whence d(x, a) + d(x, b) < 2ε = d(a, b), which

contradicts the triangle inequality. Therefore, Nε(a) ∩Nε(b) = ∅.
(b) Solution 1: (this solution does not use the result of (a)). We will

prove that K is closed by showing that if a sequence {kn} in K converges

to some x ∈ X, then x ∈ K. This follows immediately from the sequential

characterization of continuity.

Indeed, suppose kn → x, with kn ∈ K. Since f and g are continuous, we

must have f(kn)→ f(x) and g(kn)→ g(x). Since kn ∈ K for all n, we have

f(kn) = g(kn) by definition of K. Thus the sequences {f(kn)} and {g(kn)}
coincide, hence so do their limits: f(x) = g(x). Therefore, x ∈ K.

Solution 2: (this solution does use (a)). We will argue that the com-

plement X \ K is open. Take any x ∈ X \ K. Then f(x) 6= g(x), so by

(a) there exists ε > 0 such that NY
ε (f(x)) ∩ NY

ε (g(x)) = ∅. Since f and g

are continuous, there exist δ1, δ2 > 0 such that f(NX
δ1

(x)) ⊆ NY
ε (f(x)) and

g(NX
δ2

(x)) ⊆ NY
ε (g(x)).

Now let δ = min{δ1, δ2}. Then NX
δ (x) is contained in both NX

δ1
(x) and

NX
δ2

(x), so f(NX
δ (x))∩g(NX

δ (x)) ⊆ NY
ε (f(x))∩NY

ε (g(x)) = ∅. In particular,

this means that for any z ∈ NX
δ (x)) we have f(z) 6= g(z), so z ∈ X \ K.

Thus, NX
δ (x) ⊆ X \K, so X \K is open, as desired.

Problem 4: Let (X, d) be an ultrametric space. Recall that this means

that (X, d) is a metric space satisfying a stronger version of the triangle

inequality:

d(x, z) ≤ max{d(x, y), d(y, z)} for all x, y, z ∈ X.

(a) (5 pts) Fix a ∈ X and ε > 0, and let

Cε(a) = X \Nε(a) = {x ∈ X : d(x, a) ≥ ε}.

Prove that Cε(a) is open in X.
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(b) (4 pts) Use (a) to prove that if |X| ≥ 2, then X is disconnected.

Moreover, deduce that any subset Y of X, with |Y | ≥ 2, is discon-

nected.

(c) (3 pts) Let R denote reals with standard metric. Now use (b) to

prove that any continuous function f : R → X is constant (that is,

there exists x ∈ X such that f(t) = x for all t ∈ R).

Solution: (a) Again we will give two solutions:

Solution 1: Let x ∈ Cε(a), so that d(x, a) ≥ ε. We will show that

Nε(x) ⊆ Cε(a) (which would imply that Cε(a) is open). Indeed, take any

z ∈ Nε(x), so d(x, z) < ε. By ultrametric inequality we have ε ≤ d(x, a) ≤
max{d(x, z), d(z, a)}. Since d(x, z) < ε, this forces d(z, a) ≥ ε, whence

z ∈ Cε(a), as desired.

Solution 2: Here we will show that Nε(a) = X \ Cε(a) is closed. Take

any sequence {xn} in Nε(a), and suppose that xn → x for some x ∈ X. We

need to show that x ∈ Nε(a).

Since xn → x, we have d(xn, x)→ 0, so in particular d(xn, x) < ε for some

n, and by assumption d(xn, a) < ε (for all n). Therefore, by ultrametric

inequality we have d(x, a) ≤ max{d(xn, a), d(xn, x)} < ε, so x ∈ Nε(a), as

desired.

(b) Since |X| ≥ 2, we can find two distinct points x, a ∈ X. Let ε =

d(x, a). Then a ∈ Nε(a) and x ∈ Cε(a), so Nε(a) and Cε(a) are both non-

empty. Since Nε(a) is always open and Cε(a) is open by (a), we deduce that

X is a disjoint union of two non-empty open sets, so X is disconnected.

If Y is any subset of X with |Y | ≥ 2, then Y itself is an ultrametric space,

so applying the result of the previous paragraph to Y , we deduce that Y is

also disconnected.

(c) Since R is connected and f is continuous, f(R) must also be connected.

Since f(R) ⊆ X and X is disconnected, part (b) implies that |f(R)| = 1,

which is equivalent to saying that f is constant.


