2. Axioms or real numbers

The shortest way to introduce real numbers is by giving a list of axioms. In fact, it is possible to give a one sentence definition:

Definition. \mathbb{R} (real numbers) is an ordered field which has the least upper bound property (LUB property).

It takes a bit more work to explain what this definition actually means. First we will define what a field is

Definition. A field is a set F with 2 binary operations, called addition (denoted by $+)$ and multiplication (denoted by \cdot) satisfying the following axioms:

(A0) $x, y \in F \Rightarrow x + y \in F$ (A1) $x + y = y + x \forall x, y \in F$ (A2) $x + (y + z) = (x + y) + z \forall x, y, z \in F$ (A3) $\exists 0 \in F$ such that $x + 0 = x \forall x \in F$ (A4) $\forall x \in F \exists -x \in F$ such that $x + (-x) = 0$ (M0) $x, y \in F \Rightarrow xy \in F$ (M1) $xy = yx \forall x, y \in F$ (M2) $x(yz) = (xy)z \forall x, y, z \in F$ (A3) $\exists 1 \in F$ such that $x \cdot 1 = x \ \forall \ x \in F$ (A4) $\forall x \in F$ with $x \neq 0 \exists x^{-1} \in F$ such that $x \cdot x^{-1} = 1$ (D) $x(y + z) = xy + xz \forall x, y, z \in F$ (O) $0 \neq 1$

Remark: 1. Just by saying that $+$ and \cdot are binary operations on F one can actually implies that axioms (A0) and (M0) must hold, so in principle those axioms need not appear on the above list. However, it is a good idea to include them since when you want to prove that a certain set is a field with respect to certain operations, those properties have to be checked.

2. There is a "strange" algebraic object with 2 binary operations which has just one element, which happens to be both 0 and 1. This object satisfies all of the above axioms except (O) . The only point of the axiom (O) is to prevent that object from being considered a field (which happens to be convenient for many different reasons).

The familiar examples of fields include $\mathbb Q$ (rationals), $\mathbb R$ (reals), $\mathbb C$ (complex numbers) and \mathbb{Z}_p (congruence classes mod p where p is a fixed prime). Integers (\mathbb{Z}) is not a field since not all nonzero elements (in fact, very few elements) have multiplicative inverses.

Next we define the notion of an ordered set.

Definition. An ordered set is a set S with a binary relation \lt satisfying the following axioms:

- (O1) $\forall x, y \in S$ exactly one of the following holds: $x \leq y, y \leq x$ or $x = y$
- (O2) Transitivity: if $x < y$ and $y < z$, then $x < z$

In an ordered set we write $x > y \iff y < x$. Also we write $x \leq y \iff y < x$. $x < y$ or $x = y$.

Example 2.1. (1) \mathbb{Z}, \mathbb{Q} and \mathbb{R} are ordered sets with \lt in the usual sense (2) $\mathbb C$ is an ordered set with respect to the lexicographic order \lt defined as follows: $a + bi < c + di \iff a < c$ or $(a = c$ and $b < d$)

Definition. An ordered field is a set F which is both a field and an ordered set and satisfies the following additional axioms:

(OF1) If $x, y \in F$ and $x < y$, then $x + z < y + z$ for all $z \in F$ (OF2) If $x > 0$ and $y > 0$, then $xy > 0$

Example 2.2. (1) \mathbb{O} and \mathbb{R} are ordered fields (with the usual \lt)

 (2) C with the lexicographic order is not an ordered field since (OF2) fails: let $x = y = i$. Then $x = 0 + 1 \cdot i > 0$ and $y > 0$, but $xy = -1 < 0$.

A more general argument shows that $\mathbb C$ is not an ordered field with respect to ANY order \langle (see HW#1).

2.1. Least upper bound property.

Definition. Let (X, \leq) be an ordered set, let S be a subset of X, and let $M \in X$. We say that

- (a) M is an upper bound for S if $s \leq M \ \forall s \in S$
- (b) M is a least upper bound (LUB) for S if
	- (i) M is an upper bound for S
	- (ii) if x is any upper bound for S, then $M \leq x$

It is not hard to show that if LUB of S exists, then it is unique. LUB of S is frequently called the supremum of S and denoted by $\text{sup}(S)$.

- (c) S is called bounded above if it has (at least one) upper bound
- (d) X has the least upper bound (LUB) property if for every $S \subseteq X$ which is non-empty and bounded above, $\text{sup}(S)$ exists (in X).

Example 2.3. (1) $\mathbb R$ has the LUB property

 (2) Z also has the LUB property. In fact, it even has a stronger property:

if $S \subseteq \mathbb{Z}$ is bounded, then $\max(S)$ exists.

 (3) Q does not have the LUB property.

To prove (3) we need to exhibit a subset S of $\mathbb Q$ such that S is non-empty and bounded above, but does not have a supremum (in Q).

Claim 2.4 (HW#1.6). The set $S = \{x \in \mathbb{Q} : x < \sqrt{2}\} = \{x \in \mathbb{Q} : x \leq \sqrt{2}\}$ 0 or $x^2 < 2$ has both properties.

To be completed.