Solutions to Homework #9

1. Let a,b € R with a < b, and let {f,} be a sequence of differentiable
functions from [a, b] to R. Suppose that both the sequences {f,} and {f,}
are uniformly bounded. Prove that the sequence { f,,} is equicontinuous (and

hence has a uniformly convergent subsequence).

Solution: We are given that there exists M € R such that |f} (z)| < M
for all « € [a,b] and n € N. Hence by the Mean Value Theorem, we have
| frn(z)— fn(y)| < M|z—y|foralln € Nand z,y € [a,b]. From this inequality
it is clear that {f,,} is equicontinuous (the definition of equicontinuity holds
with § = 57). Since [a,b] is compact and {f,} is also uniformly bounded,
Arzela-Ascoli Theorem implies that { f,,} has a uniformly convergent subse-

quence.

2. The goal of this problem is to show that the statement of the Arzela-
Ascoli theorem may be false if the domain is not totally bounded.
(a) Consider functions f,, : R — R given by f,(z) = { % %f o] < n
1 ifjz|>n
Prove that the sequence { f,,} is uniformly bounded and equicontinu-
ous, but does not have a uniformly convergent subsequence. Deduce
that Arzela-Ascoli Theorem does not hold for X = R.
(b)* (bonus) Now let (X,d) be any unbounded metric space. Show that
there exists a sequence of continuous functions f, : X — R which
is uniformly bounded and equicontinuous, but does not have a uni-

formly convergent subsequence.

Solution: (a) Clearly, |f,(z)] < 1 for all n and z, so {f,} is uniformly
bounded. Also, a straightforward case-by-case analysis shows that |f,(z) —
faly)] < |‘rn;y‘ < |z —y] for all n (alternatively see the proof of (b) below), so
{fn} is equicontinuous (with § = ¢). It is also clear that f,, — 0 pointwise.
Suppose now that f,, has a uniformly convergent subsequence { f,, }. Then
fn, =0, so there exists K € N such that |f,, (z)| = |fn,(z) — 0] < § for all
k> K and x € R. This clearly cannot happen since f,, (nx) =1 for all .

(b) Fix a € X. Since X is unbounded, we can find a sequence {z,} in X

such that d(x,,a) > n for all n.
Define the functions f,, : R — R given by f,(x) = { d(a;;a) if d(z,a) <n
1 if d(z,a) >n
Note that the sequence { f,,} from part (a) is a special case of this construc-

tion where X = R and a = 0.



We claim that {f,} has required properties. The proof is very similar to

part (a); the only thing we will check explicitly is why { f,,} is equicontinuous.

We will show that | f,,(x)— fn(y)| < @ <d(z,y) foralln € Nand z,y € X

(hence definition of equicontinuity holds with ¢ = ¢).

So take any z,y € X and n € N. If f,(x) = fu(y), there is nothing to
prove, so assume that f,(z) # fu(y). WOLOG f,(x) < fn(y). Since the
values of f,, are bounded above by 1, we have f,(z) < 1, whence (based on
the formula for f,), fn(x) = d=.a) 1t is also clear that fuly) < @ (this

n
is true for any y and any n). Therefore,

d(ya a) — d<x7 a’) < d(.f(}, y)

<d(z,y),

where the next-to-last step holds by triangle inequality.
3. Pugh, problem 9 on p. 264.

Solution: We claim that the family {f,} is equicontinuous <= f is
constant. The backwards direction is clear. We prove the forward direction
by contrapositive. Suppose that {f,,} is equicontinuous but f is not constant
and choose x,y € R with f(y) # f(z). Let e = |f(y) — f(z)|. By equicon-
tinuity there exists ¢ > 0 such that |u — v| < ¢ implies |f,(u) — fn(v)| < e
for all u,v € R. Choose n such that @ < dandlet u =2 and v =
Then |u —v| <6 but |fn(u) = fu(v)| = |f(nu) — f(nv)| = | f(y) — f(z)] =

a contradiction.

4. Pugh, problem 14 on p. 264

z
o
&,

Solution: We will use the following terminology: Given points z,y € M
and § > 0, a d-chain from x to y is a finite sequence z = xy, ..., T, = y such
that d(x;, z;+1) < 0 for all i. Thus M is chain-connected if and only if for
any x,y € M and any § > 0 there exists a d-chain from x to y in M.

“=" Suppose that M is chain-connected and F is an equicontinuous
family of functions from M to R. Choose 6 > 0 such that d(z,y) < ¢
implies that |f(z) — f(y)| <1 for all f € F.

Suppose now that F is bounded at some (fixed) point p € M, so there
exists C' € R such that |f(p)] < C for all f € F. If ¢ € M is such that
d(q,p) < ¢, then for any f € F we have |f(q)| = |f(q) — f(p) + f(p)| <
If(q) — f)|+ |f(p)] < C+1, so F is bounded at g as well. Applying this
argument several times, we see that F is bounded at any point x € M such
that there exists a d-chain from p to x. But M is chain-connected, so such
a chain exists for any x € M. It follows that F is bounded at every x € M,
that is, F is pointwise bounded on M.



“=" We argue by contrapositive. Suppose M is not chain connected, so
there exists § > 0 and a,b € M such that there is no J-chain from a to b.

Define a relation ~ on M by x ~ y <= there is a d-chain from = to
y. We claim this is an equivalence relation. Indeed, x ~ x since z,x is a
0-chain from x to itself. If x ~ y and z = x9,x1,...,2, = y is a d-chain
from x to y, then z,,xp_1,..., 20 is a d-chain from y to x. Finally if x ~ y
and y ~ z, there exist d-chains x = zq,...,2, =y and y = yo, ..., Ym = 2;
then xg, ...,y = Yo,-..,Ym is a d-chain from z to z, so z ~ z.

By assumption, there exist non-equivalent elements a,b € M, so there is
more than one equivalence class with respect to ~. Let A be one of the
equivalence classes and let B = M \ A, so that M = AU B. Note that by
construction both A and B are non-empty.

If a € A and € M are such that d(a,z) < J, then a, z is a §-chain from
a to x, so x ~ a and hence = € A (since A is the equivalence class of any of

its elements), so x ¢ B. By contrapositive,
for any a € A,b € B we must have d(a,b) > ¢ (% % %)

Now define a sequence of functions {f,, : X — R} by setting

n ifzxeA
Jul®) = { 0 itecn.

Clearly, {f,} is bounded at any x € B and not bounded at any x € A (recall
that we made sure that A and B are non-empty). It remains to show that
{fn} is equicontinuous. Given any ¢ > 0, let us use J introduced above. If
d(z,y) < ¢, then by (***) we must have x,y € A or z,y € B. But each f,
is constant on both A and B, so |fn(x) — fn(y)] =0 < 4.

5. Let (X,d) be a metric space, and let (B(X), dynif) be the metric space
of all bounded functions f : X — R with uniform metric:

dunif(f,9) = sup [f(z) — g(z)].
zeX

Let F C B(X). Let (P) be one of the three properties: pointwise bounded,
uniformly bounded and equicontinuous. Prove that if F has (P), then its
closure F also has (P). (You need to give three different proofs, one for each
property).

Solution: (1) Suppose that F is pointwise bounded. Thus for any z € X
there exists Cy € R such that |f(z)| < C; for all f € F.

Now take any h € F. There exists f € F with dynif(h, f) < 1, so in
particular |h(z) — f(z)| < 1. Then |h(z)| < |f(z)|+ |h(z) — f(z)| < Cy + 1.
Since the obtained bound does not depend on h and since z € X was

arbitrary, we deduce that F is pointwise bounded on X.



(2) Preservation of uniform boundedness is very similar to (1).
(3) Suppose now that F is equicontinuous. Take any € > 0, and let § > 0
be such that d(z,y) < § implies |f(z) — f(y)| < § for all f € F. We claim
that d(z,y) < & implies that |h(x) — h(y)| < ¢ for all h € F.
Indeed, given h € F, we can find f € F with dynif(h, f) < 5. Then
|h(t) — f(t)] < § for all t € X, so if d(x,y) < 6, we have
5
(h(z) = h(y)| < |h(z) = f(x)] +[f(2) = F)l + [f(y) —h(y)| <3- 3 =

3 g.



