
Solutions to Homework #9

1. Let a, b ∈ R with a < b, and let {fn} be a sequence of differentiable

functions from [a, b] to R. Suppose that both the sequences {fn} and {f ′n}
are uniformly bounded. Prove that the sequence {fn} is equicontinuous (and

hence has a uniformly convergent subsequence).

Solution: We are given that there exists M ∈ R such that |f ′n(x)| ≤ M

for all x ∈ [a, b] and n ∈ N. Hence by the Mean Value Theorem, we have

|fn(x)−fn(y)| ≤M |x−y| for all n ∈ N and x, y ∈ [a, b]. From this inequality

it is clear that {fn} is equicontinuous (the definition of equicontinuity holds

with δ = ε
M ). Since [a, b] is compact and {fn} is also uniformly bounded,

Arzela-Ascoli Theorem implies that {fn} has a uniformly convergent subse-

quence.

2. The goal of this problem is to show that the statement of the Arzela-

Ascoli theorem may be false if the domain is not totally bounded.

(a) Consider functions fn : R→ R given by fn(x) =

{ |x|
n if |x| ≤ n

1 if |x| > n
Prove that the sequence {fn} is uniformly bounded and equicontinu-

ous, but does not have a uniformly convergent subsequence. Deduce

that Arzela-Ascoli Theorem does not hold for X = R.

(b)* (bonus) Now let (X, d) be any unbounded metric space. Show that

there exists a sequence of continuous functions fn : X → R which

is uniformly bounded and equicontinuous, but does not have a uni-

formly convergent subsequence.

Solution: (a) Clearly, |fn(x)| ≤ 1 for all n and x, so {fn} is uniformly

bounded. Also, a straightforward case-by-case analysis shows that |fn(x)−
fn(y)| ≤ |x−y|n ≤ |x−y| for all n (alternatively see the proof of (b) below), so

{fn} is equicontinuous (with δ = ε). It is also clear that fn → 0 pointwise.

Suppose now that fn has a uniformly convergent subsequence {fnk
}. Then

fnk
⇒0, so there exists K ∈ N such that |fnk

(x)| = |fnk
(x) − 0| < 1

2 for all

k ≥ K and x ∈ R. This clearly cannot happen since fnk
(nk) = 1 for all k.

(b) Fix a ∈ X. Since X is unbounded, we can find a sequence {xn} in X

such that d(xn, a) ≥ n for all n.

Define the functions fn : R→ R given by fn(x) =

{
d(x,a)

n if d(x, a) ≤ n
1 if d(x, a) > n

Note that the sequence {fn} from part (a) is a special case of this construc-

tion where X = R and a = 0.
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We claim that {fn} has required properties. The proof is very similar to

part (a); the only thing we will check explicitly is why {fn} is equicontinuous.

We will show that |fn(x)−fn(y)| ≤ d(x,y)
n ≤ d(x, y) for all n ∈ N and x, y ∈ X

(hence definition of equicontinuity holds with δ = ε).

So take any x, y ∈ X and n ∈ N. If fn(x) = fn(y), there is nothing to

prove, so assume that fn(x) 6= fn(y). WOLOG fn(x) < fn(y). Since the

values of fn are bounded above by 1, we have fn(x) < 1, whence (based on

the formula for fn), fn(x) = d(x,a)
n . It is also clear that fn(y) ≤ d(y,a)

n (this

is true for any y and any n). Therefore,

|fn(y)− fn(x)| = fn(y)− fn(x) ≤ d(y, a)− d(x, a)

n
≤ d(x, y)

n
≤ d(x, y),

where the next-to-last step holds by triangle inequality.

3. Pugh, problem 9 on p. 264.

Solution: We claim that the family {fn} is equicontinuous ⇐⇒ f is

constant. The backwards direction is clear. We prove the forward direction

by contrapositive. Suppose that {fn} is equicontinuous but f is not constant

and choose x, y ∈ R with f(y) 6= f(x). Let ε = |f(y) − f(x)|. By equicon-

tinuity there exists δ > 0 such that |u − v| < δ implies |fn(u) − fn(v)| < ε

for all u, v ∈ R. Choose n such that |y−x|n < δ and let u = y
n and v = x

n .

Then |u− v| < δ but |fn(u)− fn(v)| = |f(nu)− f(nv)| = |f(y)− f(x)| = ε,

a contradiction.

4. Pugh, problem 14 on p. 264

Solution: We will use the following terminology: Given points x, y ∈M
and δ > 0, a δ-chain from x to y is a finite sequence x = x0, . . . , xn = y such

that d(xi, xi+1) < δ for all i. Thus M is chain-connected if and only if for

any x, y ∈M and any δ > 0 there exists a δ-chain from x to y in M .

“⇒” Suppose that M is chain-connected and F is an equicontinuous

family of functions from M to R. Choose δ > 0 such that d(x, y) < δ

implies that |f(x)− f(y)| < 1 for all f ∈ F .

Suppose now that F is bounded at some (fixed) point p ∈ M , so there

exists C ∈ R such that |f(p)| ≤ C for all f ∈ F . If q ∈ M is such that

d(q, p) < ε, then for any f ∈ F we have |f(q)| = |f(q) − f(p) + f(p)| ≤
|f(q)− f(p)|+ |f(p)| ≤ C + 1, so F is bounded at q as well. Applying this

argument several times, we see that F is bounded at any point x ∈M such

that there exists a δ-chain from p to x. But M is chain-connected, so such

a chain exists for any x ∈M . It follows that F is bounded at every x ∈M ,

that is, F is pointwise bounded on M .
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“⇒” We argue by contrapositive. Suppose M is not chain connected, so

there exists δ > 0 and a, b ∈M such that there is no δ-chain from a to b.

Define a relation ∼ on M by x ∼ y ⇐⇒ there is a δ-chain from x to

y. We claim this is an equivalence relation. Indeed, x ∼ x since x, x is a

δ-chain from x to itself. If x ∼ y and x = x0, x1, . . . , xn = y is a δ-chain

from x to y, then xn, xn−1, . . . , x0 is a δ-chain from y to x. Finally if x ∼ y
and y ∼ z, there exist δ-chains x = x0, . . . , xn = y and y = y0, . . . , ym = z;

then x0, . . . , xn = y0, . . . , ym is a δ-chain from x to z, so x ∼ z.
By assumption, there exist non-equivalent elements a, b ∈ M , so there is

more than one equivalence class with respect to ∼. Let A be one of the

equivalence classes and let B = M \ A, so that M = A t B. Note that by

construction both A and B are non-empty.

If a ∈ A and x ∈M are such that d(a, x) < δ, then a, x is a δ-chain from

a to x, so x ∼ a and hence x ∈ A (since A is the equivalence class of any of

its elements), so x 6∈ B. By contrapositive,

for any a ∈ A, b ∈ B we must have d(a, b) ≥ δ (∗ ∗ ∗)

Now define a sequence of functions {fn : X → R} by setting

fn(x) =

{
n if x ∈ A
0 if x ∈ B.

Clearly, {fn} is bounded at any x ∈ B and not bounded at any x ∈ A (recall

that we made sure that A and B are non-empty). It remains to show that

{fn} is equicontinuous. Given any ε > 0, let us use δ introduced above. If

d(x, y) < δ, then by (***) we must have x, y ∈ A or x, y ∈ B. But each fn

is constant on both A and B, so |fn(x)− fn(y)| = 0 < δ.

5. Let (X, d) be a metric space, and let (B(X), dunif ) be the metric space

of all bounded functions f : X → R with uniform metric:

dunif (f, g) = sup
x∈X
|f(x)− g(x)|.

Let F ⊆ B(X). Let (P) be one of the three properties: pointwise bounded,

uniformly bounded and equicontinuous. Prove that if F has (P), then its

closure F also has (P). (You need to give three different proofs, one for each

property).

Solution: (1) Suppose that F is pointwise bounded. Thus for any x ∈ X
there exists Cx ∈ R such that |f(x)| ≤ Cx for all f ∈ F .

Now take any h ∈ F . There exists f ∈ F with dunif (h, f) < 1, so in

particular |h(x)− f(x)| < 1. Then |h(x)| < |f(x)|+ |h(x)− f(x)| ≤ Cx + 1.

Since the obtained bound does not depend on h and since x ∈ X was

arbitrary, we deduce that F is pointwise bounded on X.
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(2) Preservation of uniform boundedness is very similar to (1).

(3) Suppose now that F is equicontinuous. Take any ε > 0, and let δ > 0

be such that d(x, y) < δ implies |f(x) − f(y)| < ε
3 for all f ∈ F . We claim

that d(x, y) < δ implies that |h(x)− h(y)| < ε for all h ∈ F .

Indeed, given h ∈ F , we can find f ∈ F with dunif (h, f) < ε
3 . Then

|h(t)− f(t)| < ε
3 for all t ∈ X, so if d(x, y) < δ, we have

|h(x)− h(y)| ≤ |h(x)− f(x)|+ |f(x)− f(y)|+ |f(y)− h(y)| < 3 · ε
3

= ε.


