Solutions to Homework #38

1. Let X be a metric space and {f,}, f functions from X to R. Suppose
that f,=f on X.

(i) Prove that if each f,, is bounded, then f is bounded.

(ii) Assume that f is bounded. Prove that there exists M € N and
C € R such that |f,(z)| < C for all n > M and z € X. In other
words, prove that the sequence {f,} becomes uniformly bounded

after we remove the first few terms at the beginning.

Solution: (i) Since f,=2f, there exists M € N such that |f,(z) — f(z)| < 1
for all n > M and all z € X. We are given that each f, is bounded; in
particular, fys is bounded, so there exists C' € R such that |fa(x)] < C
for all z € X. Then |f(z)| = [f(x) = fu(z) + fur(2)] < [f(2) = far(2)] +
|fam(z)] <C+1forall z € X, so fis bounded.

(ii) As in (i) there exists M € N such that |f,(x) — f(x)] < 1 for all
n > M and all x € X. This time we are given that f is bounded, so there
exists D € R such that |f(z)| < D for all x € X. Then for all n > M and
x € X we have | f,(z)| < |fn(x) — f(x)|+|f(z)] < D+1, so the assertion of
(ii) holds with D = C + 1.

2. Problem 5 on p. 263 in Pugh (see Exercise 3.36 for the definition
of jump and removable discontinuities). A clarification on the statement:
in each part of the problem you are given some property (P) of functions;
the question is the following: if each f, has property (P), is it always true
that the limiting function f also has (P). In part (e) countable should mean

‘infinite countable’.

Solution: (a) true by Theorem 14.1 from class.

(b) True. We first prove a lemma:

Lemma: If f,=f on some metric space X and x € X is such that f, is

continuous at x for infinitely many n, then f is continuous at x.

Proof. By assumption we can find an infinite sequence ny < no < ... such
that each f,, is continuous at . But then {f,,} is a subsequence of {f,},
and since f,=3f, it is clear that f,, = f as well. Since each f,, is continuous

at x, Theorem 1 from 4.1 in Pugh implies that f is continuous at x. ([l

We can now prove that (b) is true by contrapositive. Suppose that f has

at least 11 points of discontinuity, call them z1,...,z11. Foreach 1 <: <11
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let S; = {n € N : f, is continuous at z;}. By (the contrapositive of) the
11

Lemma, each set S; is finite, and hence |J S; is finite. Thus, there exists
i=1

n € N which does not lie in S; for any 4, but then f,, must be discontinuous

at each of the 11 points z1,...,x11, a contradiction.

(c) False. Let [a,b] = [0,10], let g : [0,10] — R be given by
(z) = 1 ifxeZ
=10 ifzeZ
Define f,(z) = @ for each n. Then f, =0 since |f,(z)| < 1 and 1 does
not involve z and tends to 0. Clearly each f,, has 11 discontinuities, namely

0,1,...,10, but f =0 has no discontinuities.
(d) False. Let [a,b] =[0,1], let g : [0,1] — R be given by

0 otherwise

f(:c):{ T if$:%forsomek:€N

Now define

0 if x <

f(2) :{ flx) ifz>

SI=3 =

Then f,=f since f,, = f on the interval [,1] and |f, — f| < 2 on [0, 1),

each f, has exactly n discontinuities (at the points % with £ < n), but f

has infinitely many discontinuities.

(e) False. Let [a,b] =[0,1], let g : [0,1] — R be given by

() = 1 if:c:%forsomekeN
I =1 0  otherwise

Define f,(z) = # for each n. Then f,=0 as in (c), each f, has infinitely

many discontinuities, all of them of jump type, but f has no discontinuities.

(f) False. Let [a,b] = [-1,1], and define f, : [-1,1] — R by

+ fr>0andxz e Q
ifz>0and z ¢ Q
fr<OandzeQ

ifr<Oand x ¢ Q

3=

fn() =

OI|= = =

It is easy to show that f,, has an oscillating discontinuity at every x and in

particular has no jump discontinuities. On the other hand, f,=f where
1 ifz>0
f(””){o if # <0,

and clearly f has a jump discontinuity at 0.



(g) True. To prove this it suffices to show the following: if f,=f and
for each ¢ € (a,b] the left-hand limit lim f,(z) exists, then lim f(z) also
exists, and similarly for the right—hangél_i(ijmit at each ¢ € [a, b)ﬂg._>C

Let us fix ¢ € (a,b]. We first prove that the sequence of left-hand limits
{Ln = lim fu(z)};2, is Cauchy. Take any € > 0. Since f,=f and hence
{fn}is il_r;icformly Cauchy, there exists M € N such that |f,,(z) — fin(2)] < §
for all n,m > M and all = € [a, b].

Now take any n,m > M. Since lim f,(x) = Ly, there exists d,, > 0 such
Tr—Cc—

that |fn(z) — Ln| < § for all € (¢ — dp,c). Similarly, there exists d,, > 0
such that |f(7) — Ly,| < § for all x € (¢ — 0, ¢). Let § = min{dy, 0} and
choose any x € (¢ — d,c). Then

L= Ll < Lo = ful@) 4 |fn(@) = Fan(@)] + [ fn(@) = L] <3 5 =

Thus, the sequence {L,} is indeed Cauchy and hence converges to some
L € R. We now prove that lim f(z) = L. Again take any ¢ > 0. Since

r—Cc—

Jn=2f, there exists N1 € N such that |f,,(z) — f(z)| < § for all n > N and
r € [a,b]. Since L, — L, there exists No € N such that [L, — L| < § for
all n > N. Finally, choose any n > max{Nj, No}. Since lim: fn(z) = Ly,
there exists § > 0 such that |f,(z) — Ly| < § for all z € (cxj%, ¢). Then for

all x € (¢ — d,c) we have

[(2) = L] < [£(2) = fal@)| + |fule) = Lal + Lo — LI <3- = =<,

so lim f(z) = L, as desired.
T—Cc—

3. For each o € R define the function I, : R — R by
0 ifzr<a
Ia(x)_{ 1 ifz>a
Now let S = {s1,s2,...} be a countable infinite subset of R, and define
f:R—=Rby f(z)=>27 L2 (@) Pprove that

n=1 2n
(a) the series always converges (so that f is indeed defined on R),
(b) f is increasing (that is, x < y implies f(z) < f(y)), and
(c)* f is continuous at © <= z ¢ S.

Solution: (a) Let f,(z) = 15’577(;1), so that f(z) = > 02, fa(x). Clearly,
|fn(z)] < 5. Since the series Y 5= converges, by the Weierstrass M-test,
Y02 | fn converges uniformly; in particular, f(z) is always defined.

(b) Take any real numbers < y. Then f(y)—f(x) = > oo (fn(y)—fn(z))

(note that the series on the right is convergent as the difference of two
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convergent series). It is clear from the definition that each f,, is increasing,
s0 fn(y) — fn(x) > 0. Thus, f(y) — f(x) is the sum of a (convergent) series
with non-negative terms, so f(y) — f(z) > 0, as desired.

(c) Suppose first that ¢ S. Then each f, is continuous at x, whence all
the partial sums s, = )., f; of the functional series ) f; are continuous
at x. Since s, = f as we showed above, Theorem 1 from 4.1 in Pugh implies
that f is continuous at x.

Suppose now that = € S, so x = s, for some n. We can write f =g+ h
where g = fp, and h =) “n fm. Then we can apply the above argument
to h (and the set S\ {s,}) to conclude that h is continuous at z = s,. On
the other hand, g = f, is clearly discontinuous at s,. Hence f must also be
discontinuous at s, (if f were continuous at s,, then g = f — h would also
be continuous at s, as the difference of two functions continuous at sy,).

4. Problem 7.3:15 from Bergman’s supplement to Rudin (page 79), see
http://math.berkeley.edu/~gbergman/ug.hndts/m104_Rudin_exs.pdf

You can assume that the functions are real-valued (not complex-valued);

also J denotes the natural numbers.

Solution: We will use notations from Bergman’s notes except that we
will denote the set of natural numbers by N (as usual) instead of J.

(a) First note that d((p, s), (p',s")) < 1 for all (p, s), (p/,s’) € X. Consider
any three points (p1, s1), (p2, $2), (p3,s3) € X. If p1 # pa or pa # ps, then
d((p1, s1), (P2, 2)) + d((p2, 52), (p3,53)) = 1 = d((p1, 51), (3, 53))-

And if p1 = p = ps, then d((p1, 51), (p3, 53)) = |51 — 3| < [s1— 52|+ 52—
s3| = d((p1, s1), (P2, 52)) + d((p2, 52), (p3, 53))-

(b) We start with a lemma:

Lemma: Let x = (p,1) € X (where n € N), and let § <
N (z) =z (so in particular, x is an isolated point of X ).

Proof: Take any y € X with d(z,y) < J. Since § < % < 1, y must have
the form y = (p, %) (that is, the first coordinates of x and y coincide and

n(n+1) Then

the second coordinate of y is nonzero). We need to show that m = n.
If m#mn,thenm <n—1orm>n+1. Ifm<n-—1, then d(z,y) =

% - % < ﬁ - % = n(nl > 0, a contradiction. And if m > n + 1, then
dzy)=1-L>1_ n%rl = n(n+1) > 0, a contradiction. Thus, m = n.

O


http://math.berkeley.edu/~gbergman/ug.hndts/m104_Rudin_exs.pdf

We proceed with the proof of (b). We first show that f,, — f pointwise
<= F'is continuous.

“=" Clearly, any function will be continuous at an isolated point of a
metric space. Thus, by Lemma we only need to show that F' is continuous
at points of the form (p,0). Fix p € F and € > 0. Since f,, — f pointwise,
there exists N € N such that |[f,(p) — f(p)] < € for all n > N. Now
pick any 0 < § < . It is clear that Nj*((p,0)) is contained in the set

{(p,2):n > N}. But if n > N, then by definition of F we have

1E((p, ) = F((p,0))] = |fu(p) = f(p)| <&, s0 F((p, 7)) € NE(F((p, 0)))-
Thus, we showed that F(NgX((p,0))) € NEX(F((p,0))), so F is continuous
at (p,0).

The proof of the reverse implication ‘<=”is almost the same. Assume that

F' is continuous. Hence, for any p € E and € > 0, we can find 4 > 0 such
that F(N{((p,0))) € NE(F((p,0))). Now pick N € N with N > 1. The
n>N,

same computation as above then shows that | f,,(p) — f(p)| < ¢ for all
so fn, — f pointwise.

Now we prove that f,=f <= F is uniformly continuous.

‘=" Fix € > 0. By the definition of uniform convergence and the Cauchy
criterion for uniform convergence, there exists N € N such that |f,(p) —
f(p)] < eforalln > N and all p € E and |fn(p) — fin(p)| < € for all
n,m > N and all p € F.

Pick 0 < § < m, and take any two distinct points z,y € X with
d(z,y) < J§. Since § < 1, z and y must have the same first coordinate,
so x = (p,s) and y = (p,s’) for some s,s' € S. If s and s are both

nonzero, then Lemma implies that s = % and s’ = % with n,m > N (if for

instance, n < N, then § < N so by Lemma Néx(a:) =1z, a

|
N+1) n(n+1)’
contradiction since y € N§* (x)). Therefore, we have

[F(2) = F)l = £ ((p, ) = f((0, 5)) = [fa(0) = fm(p)] <&

Suppose now that s = 0 or s/ = 0. Since x # y, we cannot have s = s’ = 0,
and WOLOG assume that s/ = 0, so that s = % for some n € N. Then
% =d(z,y) << %, so n > N, and therefore,

|F(2) = Fy)l = 1f((p. ) = F(2,0)] = |fulp) = f()] <e.
Thus, inequality d(z,y) < 0 always implies |F'(z) — F(y)| < €, whence F' is

uniformly continuous.



“<” Now suppose that F is uniformly continous. Thus, given ¢ > 0,
there is 0 > 0 such that d(z,y) < ¢ always implies |F(z) — F(y)| < e.
Pick any N € N with % < 6. Then for any p € E and any n > N we
have d((p, ), (»,0)) < 9, so |F((p, ;) — F((p,0))] < e. Since F((p, ) —
F((p,0)) = fu(p) — f(p), by definition fr,=2f.



