
Solutions to Homework #8

1. Let X be a metric space and {fn}, f functions from X to R. Suppose

that fn⇒f on X.

(i) Prove that if each fn is bounded, then f is bounded.

(ii) Assume that f is bounded. Prove that there exists M ∈ N and

C ∈ R such that |fn(x)| ≤ C for all n ≥ M and x ∈ X. In other

words, prove that the sequence {fn} becomes uniformly bounded

after we remove the first few terms at the beginning.

Solution: (i) Since fn⇒f , there exists M ∈ N such that |fn(x)− f(x)| < 1

for all n ≥ M and all x ∈ X. We are given that each fn is bounded; in

particular, fM is bounded, so there exists C ∈ R such that |fM (x)| ≤ C

for all x ∈ X. Then |f(x)| = |f(x) − fM (x) + fM (x)| ≤ |f(x) − fM (x)| +
|fM (x)| < C + 1 for all x ∈ X, so f is bounded.

(ii) As in (i) there exists M ∈ N such that |fn(x) − f(x)| < 1 for all

n ≥ M and all x ∈ X. This time we are given that f is bounded, so there

exists D ∈ R such that |f(x)| ≤ D for all x ∈ X. Then for all n ≥ M and

x ∈ X we have |fn(x)| ≤ |fn(x)− f(x)|+ |f(x)| < D+ 1, so the assertion of

(ii) holds with D = C + 1.

2. Problem 5 on p. 263 in Pugh (see Exercise 3.36 for the definition

of jump and removable discontinuities). A clarification on the statement:

in each part of the problem you are given some property (P) of functions;

the question is the following: if each fn has property (P), is it always true

that the limiting function f also has (P). In part (e) countable should mean

‘infinite countable’.

Solution: (a) true by Theorem 14.1 from class.

(b) True. We first prove a lemma:

Lemma: If fn⇒f on some metric space X and x ∈ X is such that fn is

continuous at x for infinitely many n, then f is continuous at x.

Proof. By assumption we can find an infinite sequence n1 < n2 < . . . such

that each fnk
is continuous at x. But then {fnk

} is a subsequence of {fn},
and since fn⇒f , it is clear that fnk

⇒f as well. Since each fnk
is continuous

at x, Theorem 1 from 4.1 in Pugh implies that f is continuous at x. �

We can now prove that (b) is true by contrapositive. Suppose that f has

at least 11 points of discontinuity, call them x1, . . . , x11. For each 1 ≤ i ≤ 11
1
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let Si = {n ∈ N : fn is continuous at xi}. By (the contrapositive of) the

Lemma, each set Si is finite, and hence
11⋃
i=1

Si is finite. Thus, there exists

n ∈ N which does not lie in Si for any i, but then fn must be discontinuous

at each of the 11 points x1, . . . , x11, a contradiction.

(c) False. Let [a, b] = [0, 10], let g : [0, 10]→ R be given by

g(x) =

{
1 if x ∈ Z
0 if x 6∈ Z

Define fn(x) = g(x)
n for each n. Then fn⇒0 since |fn(x)| ≤ 1

n and 1
n does

not involve x and tends to 0. Clearly each fn has 11 discontinuities, namely

0, 1, . . . , 10, but f = 0 has no discontinuities.

(d) False. Let [a, b] = [0, 1], let g : [0, 1]→ R be given by

f(x) =

{
x if x = 1

k for some k ∈ N
0 otherwise

Now define

fn(x) =

{
f(x) if x ≥ 1

n
0 if x < 1

n

Then fn⇒f since fn = f on the interval [ 1n , 1] and |fn − f | ≤ 1
n on [0, 1n),

each fn has exactly n discontinuities (at the points 1
k with k ≤ n), but f

has infinitely many discontinuities.

(e) False. Let [a, b] = [0, 1], let g : [0, 1]→ R be given by

g(x) =

{
1 if x = 1

k for some k ∈ N
0 otherwise

Define fn(x) = g(x)
n for each n. Then fn⇒0 as in (c), each fn has infinitely

many discontinuities, all of them of jump type, but f has no discontinuities.

(f) False. Let [a, b] = [−1, 1], and define fn : [−1, 1]→ R by

fn(x) =


1 + 1

n if x ≥ 0 and x ∈ Q
1 if x ≥ 0 and x 6∈ Q
1
n if x < 0 and x ∈ Q
0 if x < 0 and x 6∈ Q

It is easy to show that fn has an oscillating discontinuity at every x and in

particular has no jump discontinuities. On the other hand, fn⇒f where

f(x) =

{
1 if x ≥ 0
0 if x < 0,

and clearly f has a jump discontinuity at 0.
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(g) True. To prove this it suffices to show the following: if fn⇒f and

for each c ∈ (a, b] the left-hand limit lim
x→c−

fn(x) exists, then lim
x→c−

f(x) also

exists, and similarly for the right-hand limit at each c ∈ [a, b).

Let us fix c ∈ (a, b]. We first prove that the sequence of left-hand limits

{Ln = lim
x→c−

fn(x)}∞n=1 is Cauchy. Take any ε > 0. Since fn⇒f and hence

{fn} is uniformly Cauchy, there exists M ∈ N such that |fn(x)−fm(x)| < ε
3

for all n,m ≥M and all x ∈ [a, b].

Now take any n,m ≥M . Since lim
x→c−

fn(x) = Ln, there exists δn > 0 such

that |fn(x) − Ln| < ε
3 for all x ∈ (c − δn, c). Similarly, there exists δm > 0

such that |fm(x)−Lm| < ε
3 for all x ∈ (c− δm, c). Let δ = min{δn, δm} and

choose any x ∈ (c− δ, c). Then

|Ln − Lm| ≤ |Ln − fn(x)|+ |fn(x)− fm(x)|+ |fm(x)− Lm| < 3 · ε
3

= ε.

Thus, the sequence {Ln} is indeed Cauchy and hence converges to some

L ∈ R. We now prove that lim
x→c−

f(x) = L. Again take any ε > 0. Since

fn⇒f , there exists N1 ∈ N such that |fn(x)− f(x)| < ε
3 for all n ≥ N1 and

x ∈ [a, b]. Since Ln → L, there exists N2 ∈ N such that |Ln − L| < ε
3 for

all n ≥ N2. Finally, choose any n ≥ max{N1, N2}. Since lim
x→c−

fn(x) = Ln,

there exists δ > 0 such that |fn(x)− Ln| < ε
3 for all x ∈ (c− δ, c). Then for

all x ∈ (c− δ, c) we have

|f(x)− L| ≤ |f(x)− fn(x)|+ |fn(x)− Ln|+ |Ln − L| < 3 · ε
3

= ε,

so lim
x→c−

f(x) = L, as desired.

3. For each α ∈ R define the function Iα : R→ R by

Iα(x) =

{
0 if x < α
1 if x ≥ α

Now let S = {s1, s2, . . .} be a countable infinite subset of R, and define

f : R→ R by f(x) =
∑∞

n=1
Isn (x)
2n . Prove that

(a) the series always converges (so that f is indeed defined on R),

(b) f is increasing (that is, x < y implies f(x) ≤ f(y)), and

(c)* f is continuous at x ⇐⇒ x 6∈ S.

Solution: (a) Let fn(x) = Isn (x)
2n , so that f(x) =

∑∞
n=1 fn(x). Clearly,

|fn(x)| ≤ 1
2n . Since the series

∑ 1
2n converges, by the Weierstrass M-test,∑∞

n=1 fn converges uniformly; in particular, f(x) is always defined.

(b) Take any real numbers x < y. Then f(y)−f(x) =
∑∞

n=1(fn(y)−fn(x))

(note that the series on the right is convergent as the difference of two
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convergent series). It is clear from the definition that each fn is increasing,

so fn(y)− fn(x) ≥ 0. Thus, f(y)− f(x) is the sum of a (convergent) series

with non-negative terms, so f(y)− f(x) ≥ 0, as desired.

(c) Suppose first that x 6∈ S. Then each fn is continuous at x, whence all

the partial sums sn =
∑n

i=1 fi of the functional series
∑
fi are continuous

at x. Since sn⇒f as we showed above, Theorem 1 from 4.1 in Pugh implies

that f is continuous at x.

Suppose now that x ∈ S, so x = sn for some n. We can write f = g + h

where g = fn and h =
∑

m6=n fm. Then we can apply the above argument

to h (and the set S \ {sn}) to conclude that h is continuous at x = sn. On

the other hand, g = fn is clearly discontinuous at sn. Hence f must also be

discontinuous at sn (if f were continuous at sn, then g = f − h would also

be continuous at sn as the difference of two functions continuous at sn).

4. Problem 7.3:15 from Bergman’s supplement to Rudin (page 79), see

http://math.berkeley.edu/~gbergman/ug.hndts/m104_Rudin_exs.pdf

You can assume that the functions are real-valued (not complex-valued);

also J denotes the natural numbers.

Solution: We will use notations from Bergman’s notes except that we

will denote the set of natural numbers by N (as usual) instead of J .

(a) First note that d((p, s), (p′, s′)) ≤ 1 for all (p, s), (p′, s′) ∈ X. Consider

any three points (p1, s1), (p2, s2), (p3, s3) ∈ X. If p1 6= p2 or p2 6= p3, then

d((p1, s1), (p2, s2)) + d((p2, s2), (p3, s3)) ≥ 1 ≥ d((p1, s1), (p3, s3)).

And if p1 = p2 = p3, then d((p1, s1), (p3, s3)) = |s1−s3| ≤ |s1−s2|+ |s2−
s3| = d((p1, s1), (p2, s2)) + d((p2, s2), (p3, s3)).

(b) We start with a lemma:

Lemma: Let x = (p, 1n) ∈ X (where n ∈ N), and let δ < 1
n(n+1) . Then

NX
δ (x) = x (so in particular, x is an isolated point of X).

Proof: Take any y ∈ X with d(x, y) < δ. Since δ < 1
n ≤ 1, y must have

the form y = (p, 1
m) (that is, the first coordinates of x and y coincide and

the second coordinate of y is nonzero). We need to show that m = n.

If m 6= n, then m ≤ n − 1 or m ≥ n + 1. If m ≤ n − 1, then d(x, y) =
1
m −

1
n ≤

1
n−1 −

1
n = 1

n(n−1) > δ, a contradiction. And if m ≥ n + 1, then

d(x, y) = 1
n −

1
m ≥

1
n −

1
n+1 = 1

n(n+1) > δ, a contradiction. Thus, m = n.

�

http://math.berkeley.edu/~gbergman/ug.hndts/m104_Rudin_exs.pdf


5

We proceed with the proof of (b). We first show that fn → f pointwise

⇐⇒ F is continuous.

“⇒” Clearly, any function will be continuous at an isolated point of a

metric space. Thus, by Lemma we only need to show that F is continuous

at points of the form (p, 0). Fix p ∈ E and ε > 0. Since fn → f pointwise,

there exists N ∈ N such that |fn(p) − f(p)| < ε for all n ≥ N . Now

pick any 0 < δ < 1
N . It is clear that NX

δ ((p, 0)) is contained in the set

{(p, 1n) : n ≥ N}. But if n ≥ N , then by definition of F we have

|F ((p, 1n))− F ((p, 0))| = |fn(p)− f(p)| < ε, so F ((p, 1n)) ∈ NR
ε (F ((p, 0))).

Thus, we showed that F (NX
δ ((p, 0))) ⊆ NR

ε (F ((p, 0))), so F is continuous

at (p, 0).

The proof of the reverse implication ‘⇐”is almost the same. Assume that

F is continuous. Hence, for any p ∈ E and ε > 0, we can find δ > 0 such

that F (NX
δ ((p, 0))) ⊆ NR

ε (F ((p, 0))). Now pick N ∈ N with N > 1
δ . The

same computation as above then shows that |fn(p)−f(p)| < ε for all n ≥ N ,

so fn → f pointwise.

Now we prove that fn⇒f ⇐⇒ F is uniformly continuous.

‘⇒” Fix ε > 0. By the definition of uniform convergence and the Cauchy

criterion for uniform convergence, there exists N ∈ N such that |fn(p) −
f(p)| < ε for all n ≥ N and all p ∈ E and |fn(p) − fm(p)| < ε for all

n,m ≥ N and all p ∈ E.

Pick 0 < δ < 1
N(N+1) , and take any two distinct points x, y ∈ X with

d(x, y) < δ. Since δ < 1, x and y must have the same first coordinate,

so x = (p, s) and y = (p, s′) for some s, s′ ∈ S. If s and s′ are both

nonzero, then Lemma implies that s = 1
n and s′ = 1

m with n,m > N (if for

instance, n < N , then δ < 1
N(N+1) <

1
n(n+1) , so by Lemma NX

δ (x) = x, a

contradiction since y ∈ NX
δ (x)). Therefore, we have

|F (x)− F (y)| = |f((p, 1n))− f((p, 1
m))| = |fn(p)− fm(p)| < ε.

Suppose now that s = 0 or s′ = 0. Since x 6= y, we cannot have s = s′ = 0,

and WOLOG assume that s′ = 0, so that s = 1
n for some n ∈ N. Then

1
n = d(x, y) < δ < 1

N , so n > N , and therefore,

|F (x)− F (y)| = |f((p, 1n))− f((p, 0)| = |fn(p)− f(p)| < ε.

Thus, inequality d(x, y) < δ always implies |F (x)− F (y)| < ε, whence F is

uniformly continuous.
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“⇐” Now suppose that F is uniformly continous. Thus, given ε > 0,

there is δ > 0 such that d(x, y) < δ always implies |F (x) − F (y)| < ε.

Pick any N ∈ N with 1
N < δ. Then for any p ∈ E and any n ≥ N we

have d((p, 1n), (p, 0)) < δ, so |F ((p, 1n)) − F ((p, 0))| < ε. Since F ((p, 1n)) −
F ((p, 0)) = fn(p)− f(p), by definition fn⇒f .


