
Solutions to Homework #7

1. Let X be a metric space and Y a subset of X.

(a) Prove that if X is complete and Y is closed in X, then Y is complete.

(b) Prove that if Y is complete, then Y is closed in X.

Recall that we proved the analogous statements with ‘complete’ replaced by

‘sequentially compact’ (Theorem 9.2 and Theorem 8.1, respectively).

Solution: (a) Take any Cauchy sequence {yn} in Y . Then {yn} is also a

sequence in X, so (since X is complete) {yn} converges to some x ∈ X. Then

x ∈ Y by Lemma 6.2 (sequential characterization of closures), and since Y

is closed, we have x ∈ Y . Thus, every Cauchy sequence in Y converges in

Y , so Y is complete.

(b) We will prove that Y is closed by checking the inclusion Y ⊆ Y .

So take any x ∈ Y . By Lemma 6.2, there is a sequence {yn} in Y which

converges to x. Since a convergent sequence in any metric space is Cauchy,

{yn} is a Cauchy sequence (as a sequence in X, hence also as a sequence in

Y ). Since Y is complete, {yn} must converge in Y . Finally, since a sequence

has at most one limit, we conclude that x ∈ Y . Thus, Y ⊆ Y as desired.

2. This problem describes a fancy way to show that closed bounded

intervals in R are connected. A metric space (X, d) is called chain-connected

if for any x, y ∈ X and δ > 0 there exists a finite sequence x0, x1, . . . , xn of

points of X such that x0 = x, xn = y and d(xi, xi+1) < δ for all i.

(a) Let X be metric space which is compact and chain-connected. Prove

that X is connected.

(b) Prove that a closed bounded interval [a, b] ⊆ R is chain-connected

and deduce from (a) that [a, b] is connected.

Solution: (a) Suppose that X is disconnected. Then by Problem 2 in

HW#6, there exists a continuous function f : X → R with f(X) = {−1, 1}.
Since X is compact, by Theorem 11.4 from class, f must be uniformly

continuous. We will now show that uniform continuity of such f contradicts

the chain property.

Indeed, since f is uniformly continuous, there must exist δ > 0 such that

|f(x)− f(y)| < 2 for any x, y ∈ X with d(x, y) < δ. Since f(X) = {−1, 1},
the inequality |f(x) − f(y)| < 2 is only possible if f(x) = f(y). Thus,

d(x, y) < δ forces f(x) = f(y).
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Now choose any x, y ∈ X with f(x) = −1 and f(y) = 1. By the chain

property there exists a finite sequence x0, x1, . . . , xn of points of X such that

x0 = x, xn = y and d(xi, xi+1) < δ for all i. Hence we must have f(xi) =

f(xi+1) for all i, whence f(x) = f(x0) = f(x1) = . . . = f(xn) = f(y), which

is a contradiction.

(b) Let x, y ∈ [a, b]; WOLOG x ≤ y. Given δ > 0, choose n ∈ N such

that n > y−x
δ , and define xi = x+ iy−xn . Then it is clear that the sequence

x0 = x, x1, . . . , xn = y satisfies the definition of the chain property.

3. Let f : R→ R be a differentiable function.

(a) Assume that f ′ is bounded, that is, there exists M ∈ R such that

|f ′(x)| ≤M for all x ∈ R. Prove that f is uniformly continuous.

(b) Now assume that f ′(x) → ∞ as x → ∞. Prove that f is not

uniformly continuous.

Solution: (a) By the mean value theorem, for any x, y ∈ R, with x < y,

there exists c ∈ (x, y) such that f(y)− f(x) = f ′(c)(y− x). By assumption,

|f ′(c)| ≤M , so |f(y)− f(x)| ≤M |y − x|.
Now given ε > 0, let δ = ε

M . Then |y−x| < δ implies that |f(y)−f(x)| <
Mδ = ε, so f is uniformly continuous.

(b) To prove that f is not uniformly continuous, we need to show that

there exists ε > 0 such that for any δ > 0 there exist x, y ∈ R with |y−x| < δ

and |f(y)− f(x)| ≥ ε. We will show that this is true for ε = 1, but in fact,

we could use any ε.

Fix δ > 0. Since f ′(t) → ∞ as t → ∞, there exists N = N(δ) such that

f ′(t) ≥ 2
δ for all t ≥ N . Now take x = N and y = x+ δ

2 ; then |y−x| = δ
2 < δ.

On the other hand, by the mean value theorem, |f(y)−f(x)| = |y−x||f ′(c)|
for some c ∈ (x, y). Since c > x = N , we have f ′(c) ≥ 2

δ , so |f(y)−f(x)| ≥ 1,

as desired.

4. The goal of this problem is to fill in the details of the construction of

the completion of a metric space discussed in Lecture 13. Part (a) below is

Claim 1 from class; (b) and (c) form Claim 2 from class, and (d) is Claim 3

from class.

We start by recalling the notations introduced in class. Let (X, d) be a

metric space. Let Ω = Ω(X) be the set of all Cauchy sequences {xn}n∈N
with xn ∈ X for each n. Define the relation ∼ on Ω by setting

{xn} ∼ {yn} ⇐⇒ lim
n→∞

d(xn, yn) = 0.

(a) Prove that ∼ is an equivalence relation.
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Now let X̂ = Ω/ ∼, the set of equivalence classes with respect to ∼. The

equivalence class of a sequence {xn} will be denoted by [xn]. For instance,

[ 1n ] = [ 1
n2 ] since the sequences xn = 1

n and yn = 1
n2 are equivalent. Given

an element x ∈ X, we will denote by [x] ∈ X̂ the equivalence class of the

constant sequence all of whose elements are equal to x.

Now define the function D : X̂ × X̂ → R≥0 by setting

D([xn], [yn]) = lim
n→∞

d(xn, yn) (∗ ∗ ∗)

(b) Prove that the limit on the right-hand side of (***) always exists

and that the function D is well-defined (that is, if [xn] = [x′n] and

[yn] = [y′n], then limn→∞ d(xn, yn) = limn→∞ d(x′n, y
′
n)).

(c) Prove that (X̂,D) is a metric space

(d) Consider the map ι : X → X̂ given by ι(x) = [x] (that is, ι sends each

x to the equivalence class of the corresponding constant sequence).

Prove that ι is injective and D(ι(x), ι(y)) = d(x, y) for all x, y ∈ X.

This implies that (X, d) is isometric to the metric space (ι(X), D) (so

identifying X with ι(X), we can think of X as a subset of (X̂,D)).

Solution: (a) Reflexivity: {xn} ∼ {xn} since limn→∞ d(xn, xn) = 0. Sym-

metry ({xn} ∼ {yn} ⇒ {yn} ∼ {xn}) follows from the fact that d is sym-

metric (d(x, y) = d(y, x)).

Finally, transitivity follows from the triangle inequality: if {xn} ∼ {yn}
and {yn} ∼ {zn}, then limn→∞ d(xn, yn) = 0 and limn→∞ d(yn, zn) = 0.

Since 0 ≤ d(xn, zn) ≤ d(xn, yn) + d(yn, zn), by the squeeze theorem we have

limn→∞ d(xn, yn) = 0, so {xn} ∼ {zn}.
(b) First we show that for any Cauchy sequences {xn} and {yn}, the limit

limn→∞ d(xn, yn) exists. Since R is complete, it suffices to show that the

sequence {d(xn, yn)} is Cauchy.

Fix ε > 0. Since {xn} and {yn} are Cauchy, there exists M1,M2 ∈ N such

that d(xn, xm) < ε
2 for all n,m ≥M1 and d(yn, ym) < ε

2 for all n,m ≥M2.

Let M = max{M1,M2}. Then for all n,m ≥M we have

d(xn, yn) ≤ d(xn, xm) + d(xm, ym) + d(ym, yn) < d(xm, ym) + ε,

and similarly, d(xm, ym) < d(xn, yn) + ε. Hence |d(xn, yn)− d(xm, ym)| < ε

for all n,m ≥M , and therefore {d(xn, yn)} is Cauchy.

Now we prove independence on the equivalence class. Suppose that

{xn} ∼ {x′n} and {yn} ∼ {y′n}. Then

d(x′n, y
′
n) ≤ d(x′n, xn) + d(xn, yn) + d(yn, y

′
n). (∗ ∗ ∗)
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Since limn→∞ d(x′n, xn) = limn→∞ d(yn, y
′
n) = 0, taking limits on both

sides of (***), we conclude that limn→∞ d(x′n, y
′
n) ≤ limn→∞ d(xn, yn). By

the same argument, the reverse inequality also holds: limn→∞ d(xn, yn) ≤
limn→∞ d(x′n, y

′
n), so limn→∞ d(x′n, y

′
n) = limn→∞ d(xn, yn).

(c) The first two conditions in the definition of a metric space are clear,

so we only need to check triangle inequality. Let {xn}, {yn} and {zn} be

any Cauchy sequences. We know that d(xn, zn) ≤ d(xn, yn) + d(yn, zn) for

each n, and each of the sequences {d(xn, zn)}, {d(xn, yn)} and {d(yn, zn)}
converges, so passing to the limit in the above inequality, we get

D([xn], [zn]) = lim
n→∞

d(xn, zn) ≤ lim
n→∞

d(xn, yn) + lim
n→∞

d(yn, zn)

= D([xn], [yn]) +D([yn], [zn]).

(d) By definition D(ι(x), ι(y)) is the limit of the constant sequence d(x, y),

so D(ι(x), ι(y)) = d(x, y). Since d(x, y) 6= 0 for x 6= y, we also conclude that

ι(x) 6= ι(y) for x 6= y, so ι is injective.

5. Consider functions fn : R≥0 → R given by fn(x) = 1
nx+1 . Let 0 ≤ a ≤ b

be real numbers. Prove that {fn} converges uniformly on [a, b] ⇐⇒ a > 0

or a = b = 0.

Solution: Define f : R≥0 → R by f(0) = 1 and f(x) = 0 for x > 0. It is

clear that fn → f pointwise.

Case 1: a = 0 and b > 0. In this case f is discontinuous on [a, b] = [0, b].

Since each fn is continuous on [a, b], {fn} cannot converge uniformly to f

by Theorem 14.1 from class.

Here is a proof directly from definition. Suppose, by way of contradiction,

that {fn} converges to f uniformly. Then there exists M ∈ N such that

|fn(x)− f(x)| < 1
2 for all n ∈M and all x ∈ [0, b]. Choose n > M such that

1
n < b, and let x = 1

n . Then x ∈ [0, b] and fn(x) − f(x) = 1
n· 1

n
+1
− 0 = 1

2 ,

which is a contradiction.

Case 2: a = b = 0. Then [a, b] is just one point, so pointwise convergence

on [a, b] is the same as uniform convergence.

Case 3: a > 0. Then for all x ∈ [a, b] we have

|fn(x)− f(x)| = 1

nx+ 1
≤ 1

na+ 1
.

Since 1
na+1 does not depend on x and converges to 0 as n→∞ (since a > 0),

it follows that fn⇒f on [a, b].

6. Let X be a set, (Y, d) a metric space. Let {fn : X → Y } be a sequence

of functions, and let f : X → Y be a function.
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(i) Define what it should mean for {fn} to converge to f uniformly and

what it should mean for {fn} to be uniformly Cauchy (in class we

gave both definitions in the case Y = R, but there is a natural way

to extend them to arbitrary Y ).

(ii) Theorem 14.2 from class asserts that in the case Y = R, a sequence

{fn} is uniformly convergent if and only if it is uniformly Cauchy.

Find a natural necessary and sufficient condition on Y under which

this equivalence remain true (the answer will not depend on X as

long as X 6= ∅). You do not need to write down the full proof – just

state the condition and where it arises in the proof.

Solution: (i) {fn} converges to f uniformly if for every ε > 0 there exists

M = M(ε) ∈ N such that d(fn(x), f(x)) < ε for all n ≥M and all x ∈ X.

{fn} is uniformly Cauchy if for every ε > 0 there exists M = M(ε) ∈ N
such that d(fn(x), fm(x)) < ε for all n,m ≥M and all x ∈ X.

(ii) We claim that being uniformly convergent and being uniformly Cauchy

are equivalent conditions ⇐⇒ Y is complete. First suppose that Y is not

complete. Then Y has at least one sequence {yn} which is Cauchy but not

convergent. Then the sequence of constant functions {fn = yn} is uniformly

Cauchy but not uniformly convergent.

If Y is complete, to prove the equivalence one essentially needs to repeat

the proof of Theorem 14.2 from class. The completeness of Y is needed for

the direction “{fn} is uniformly Cauchy ⇒ {fn} is uniformly convergent”.

More specifically, if {fn} is uniformly Cauchy, then for every x ∈ X the

sequence {fn(x)} is a Cauchy sequence in Y , and completeness of Y enables

us to define the limit function f by f(x) = lim
n→∞

fn(x).

The only other (non-obvious) modification in the proof is that instead of

using the continuity of the function x 7→ |x| we need to use the fact that

for any fixed a ∈ Y the function F : Y → R given by F (y) = d(a, y) is

continuous (this was proved in HW#3).


