
Solutions to Homework #6

1. Complete the proof of the backwards direction of Theorem 12.2 from

class (which asserts the any interval in R is connected).

Solution: Let X ⊆ R be a closed interval.

Case 1: X = [a, b]. This case was done in class.

Case 2: X = [a, b). This case was also done in class, but we recall the

argument. Let I = (a, b), and for each α ∈ I let Xα = [a, α]. Then each

Xα is connected by Case 1, X =
⋃
α∈I

Xα and a ∈ Xα for all α, so ∩Xα 6= ∅.

Thus, X is connected by Problem 4.

Case 3: X = (a, b]. This case is analogous to Case 2.

Case 4: X = (a, b). Choose ε < b−a
2 , and let Y = (a, b − ε] and Z =

[a + ε, b). Then X = Y ∪ Z, Y ∩ Z 6= ∅ and Y and Z are connected by

Cases 2 and 3. Hence X is connected by Problem 4.

Case 5: X = [a,∞). In this case we write X = ∪b>a[a, b] and argue as in

case 2.

The remaining 4 cases are all very similar to one of Cases 2-5.

2. Let X be a metric space. Prove that X is disconnected if and only if

there exists a continuous function f : X → R such that f(X) = {1,−1}.
Solution: “⇒” Suppose that f(X) = {1,−1}. Since the set {1,−1} is

clearly disconnected, by Theorem 13.1 from class, it follows that X has to

be disconnected as well.

“⇐” Following the hint, assume that X = A t B with A,B open and

non-empty, and define the function f : X → R by

f(x) =

{
1 if x ∈ A
−1 if x ∈ B

Clearly, f(X) = {1,−1} (note that f(X) is precisely {1,−1} and not smaller

since A and B are non-empty). To prove that f is continuous, it suffices to

show that the preimage of any open subset is open. We will show that in

this case the preimage of ANY subset is open. This is feasible since there

are very few possible preimages.

Indeed, it clear that for a subset C of R we have f−1(C) = X if C contains

1 and −1; f−1(C) = A if C contains 1 but not −1; f−1(C) = B if C contains

−1 but not 1, and finally f−1(∅) = ∅ if C does not contain 1 or −1.

The empty set and X are always open in X, and A and B are open by

assumption. Thus, f−1(C) is always open, and we are done.
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3.

(a) Let X be a disconnected metric space, so that X = A tB for some

non-empty closed subsets A and B. Prove that if C is any connected

subset of X, then C ⊆ A or C ⊆ B.

(b) A metric space X is called path-connected if for any x, y ∈ X there

exists a continuous function f : [0, 1] → X such that f(0) = x and

f(1) = y (informally, this means that any two points in X can be

joined by a path in X). Prove that any path-connected metric space

is connected.

Solution: (a) We can always write C = (C ∩ A) t (C ∩ B). Since A

and B are closed in X, the sets C ∩ A and C ∩ B are closed in C. If C is

connected, then one of those sets has to be empty. But if C ∩ A = ∅, then

C ∩B = C, that is, C ⊆ B. Similarly, if C ∩B = ∅, then C ⊆ A.

(b) We prove this by contradiction. Suppose that X is disconnected, so

X = A t B where A and B are closed and non-empty. Choose any x ∈ A
and y ∈ B. If X is path-connected, then there exists a continuous function

f : [0, 1] → X with f(0) = x and f(1) = y. By Theorem 13.1, the set

C = f([0, 1]) must be connected, so by (a), C ⊆ A or C ⊆ B. This is

impossible since C contains both x (which is not in B) and y (which is not

in A).

4. Let X be a metric space, {Xα}α∈I a collection (not necessarily finite)

of subsets of X such that ∩α∈IXα is non-empty and ∪α∈IXα = X. Prove

that if each Xα is connected, then X is connected.

Solution: We argue by contradiction. Suppose that X is disconnected,

so X = A tB where A and B are both closed and non-empty.

By assumption, for each α ∈ I the subset Xα is connected, so by Prob-

lem 3(a) either Xα ⊆ A or Xα ⊆ B. Hence one of the following three cases

must hold.

Case 1: Xα ⊆ A for all α. Then X = ∪α∈IXα ⊆ A, so X = A and B = ∅,
a contradiction.

Case 2: Xα ⊆ B for all α. This case is analogous to Case 1.

Case 3: there exist γ, β ∈ I such that Xγ ⊆ A and Xβ ⊆ B. Then

Xγ∩Xβ ⊆ A∩B = ∅, which contradicts the assumption that the intersection

of all Xα, α ∈ I, is non-empty.

6. Let (X, dX) and (Y, dY ) be metric spaces, and consider the product

space X × Y with metric d given by d((x1, y1), (x2, y2)) = dX(x1, x2) +

dY (y1, y2).

(a) Prove that (X × Y, d) is indeed a metric space
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(b) Prove that for every x ∈ X, the subset {x} × Y = {(x, y) : y ∈ Y }
of X × Y is isometric to Y . Likewise for every y ∈ Y , the subset

X × {y} = {(x, y) : x ∈ X} is isometric to X.

(c*) Prove that if X and Y are both connected, then X × Y connected.

Solution: (b) For every x ∈ X the map fx : Y → {x} × Y given by

fx(y) = (x, y) is clearly bijective and preserves distances, so {x} × Y is

isometric to Y (and similarly X × {y} is isometric to X for every y ∈ Y ).

(c) For every x ∈ X and y ∈ Y define Tx,y = ({x} × Y ) ∪ (X × {y}).
By Problem 5 and part (a), {x} × Y and X × {y} are connected. Since

({x} × Y ) ∩ (X × {y}) = {x} × {y} 6= ∅, by Problem 4 the set Tx,y is

connected.

Now fix any y ∈ Y . Note that ∪x∈XTx,y = X×Y (since already ∪x∈XX×
{y} = X × Y ) and ∩x∈XTx,y ⊇ X × {y} is non-empty. Hence, applying

Problem 4 again we conclude that X × Y is connected.

Note: A common mistake in this problem was to represent X×Y as the

union of ALL sets Tx,y (where both x and y can vary). It is true that X×Y
is the union of all these sets; it is also true that the intersection of any two

of these sets is non-empty. However, the intersection of ALL these sets will

be empty whenever |X| > 1 and |Y | > 1, so Problem 4 cannot be applied

to this collection.

7. The goal of this problem is to prove that any open subset of R (with

standard metric) is a disjoint union of at most countably many open inter-

vals.

So, let U be any open subset of R.

(a) Define the relation ∼ on U by setting x ∼ y ⇐⇒ x = y or (x < y

and [x, y] ⊆ U) or (y < x and [y, x] ⊆ U). Prove that ∼ is an

equivalence relation.

(b) Let A be an equivalence class with respect to ∼. Show that A is an

open interval.

(c) Deduce from (b) that U is a disjoint union of open intervals. Then

prove that the number of those intervals is at most countable.

Solution: (a) Reflexivity (x ∼ x) and symmetry are obvious from the

definition, so we only check transitivity. Suppose that x ∼ y and y ∼ z for

some x, y, z ∈ U . We want to show that x ∼ z. This is obvious if x = y or

y = z or x = z, so we can assume that x, y, z are distinct.

Case 1: x < y < z. In this case we are given that [x, y] ⊆ U and

[y, z] ⊆ U . Since x < y < z, we have [x, z] = [x, y] ∪ [y, z] ⊆ U , so x ∼ z.
Case 2: x < z < y. In this case [x, z] ⊆ [x, y]. Since x ∼ y, we have

[x, y] ⊆ U and hence [x, z] ⊆ U as well.
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There are 4 more cases, but each of them is analogous to Case 1 or Case

2.

(b) Let A be the equivalence class of some x ∈ U . For each α ∈ A define

Aα as follows: Xα = [x, α] if α > x; Xα = [α, x] if α < x and Xα = {α} if

α = x. Note that each Xα ⊆ U for each α by definition of ∼.

We claim that

A =
⋃
α∈A

Xα. (∗ ∗ ∗)

Indeed, for each α ∈ A we have α ∈ Xα, so A ⊆
⋃
α∈A

Xα.

On the other hand, if y ∈ Xα for some α ∈ A, then y ∈ A. Indeed, if

y > x, then y ∈ Xα means that [x, y] ⊆ Xα; hence [x, y] ⊆ U by the first

paragraph of the proof and so y ∈ A (again by definition of ∼). The case

y < x is analogous. Thus, we showed each Xα is contained in A, which

proves the opposite inclusion.

Each Xα is an interval, hence connected and ∩Xα 6= ∅ since each Xα

contains x. Hence (***) and Problem 4 imply that A is connected, so by

Theorem 12.2 A is an interval.

It remains to show that A is an open interval. Assume the contrary –

then A has one of the forms [a, b], [a, b), (a, b], [a,+∞), (−∞, b]. We will

treat the case A = [a, b]; other cases are analogous.

So assume that A = [a, b]. Then b ∈ U ; since U is open, there is ε > 0

such that (b− ε, b+ ε) ⊆ U . But then [b, b+ ε
2 ] ⊆ U as well, so by definition

b ∼ b+ ε
2 , so b+ ε

2 ∈ A, a contradiction.

(c) Since distinct equivalence classes are disjoint and the union of all

equivalence classes is the entire set on which the equivalence relation is

defined, (b) implies that U is a disjoint union of open intervals (call these

intervals Aα), and we only need to show that the number of intervals is at

most countable.

We know that every non-empty open interval contains a rational num-

ber. Choose one rational number qα in each interval Aα. Since distinct

Aα are disjoint, the chosen numbers qα will all be distinct. Thus we have

constructed an injective map from the set of intervals {Aα} to Q or, equiv-

alently, a bijection from {Aα} to a subset of Q. Since Q is countable and a

subset of a countable set is at most countable, we deduce that the number

of intervals Aα is at most countable.

8. Use Problem 6 to show that the analogue of Problem 7 does not hold

in R2, that is, there exist open subsets of R2 which are not representable as

disjoint unions of open discs (an open disc is an open ball in R2).
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Solution: Let Y be any non-empty connected open subset of R2 which

is not an open disk (e.g. we can let Y be an open rectangle (a, b) × (c, d)–

it is connected by Problem 6). Suppose that Y is a disjoint union of open

disks {Uα}. There must be more than one disk in this collection, so if we set

A = Uα (for some fixed α) and B = ∪β 6=αUβ, then Y = A tB, both A and

B are non-empty and both A and B are open (since open disks are open and

arbitrary unions of open sets are open). This contradicts the assumption

that Y is connected.


