
Solutions to Homework #5

1. Let A be a non-empty bounded above subset of R. Prove that

sup(A) ∈ A directly from the definition of a contact point and the definition

of supremum. You should give a short clean argument.

Solution: Let M = sup(A). We prove that M ∈ A by contradiction.

Suppose M 6∈ A. Then M is not a contact point of A, so there exists ε > 0

such that A∩(M−ε,M+ε) = ∅. In other words, the interval (M−ε,M+ε)

contains no elements of A. Note that the interval [M + ε,∞) also contains

no elements of A (since all elements of A are ≤M). Hence A is contained in

R \ ((M − ε,M + ε) ∪ [M + ε,∞)) = (−∞,M − ε]. But this means that A

is bounded above by M − ε, so sup(A) ≤M − ε, which is a contradiction.

2. Prove Lemma 10.6 from class: if {xn} is a Cauchy sequence in some

metric space X, and {xn} contains a convergent (in X) subsequence, then

{xn} converges in X. You may use the fact that every metric space X is a

subset of some complete metric space Y (we will prove this in Lecture 13).

Solution: As suggested above, we assume that X ⊆ Y where Y is com-

plete. Since {xn} is a Cauchy sequence in X, it is also a Cauchy sequence

in Y , and since Y is complete, {xn} converges to some y ∈ Y . Hence every

subsequence of {xn} also converges to y. On the other hand, we are given

that some subsequence {xnk
} converges to some x ∈ X. By uniqueness of the

limit of a sequence, we must have y = x and thus y ∈ X, so {xn} converges

in X.

3. Let Z be a metric space and let Y be a dense subset of Z. Suppose

that every Cauchy sequence in Y converges in Z. Prove that Z is complete.

Solution: Let {zn} be an arbitrary sequence in Z. Since Y is dense in

Z, for each n ∈ N the intersection N1/n(zn)∩ Y is non-empty, so we can find

yn ∈ Y such that d(yn, zn) < 1
n
; in particular, d(yn, zn)→ 0 as n→∞.

Now assume that {zn} is Cauchy. We claim that in this case {yn} con-

structed above is also Cauchy. Indeed, fix ε > 0. Since {zn} is Cauchy, there
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exists M1 ∈ N such that d(zn, zm) < ε
2

for all n,m ≥ N . Choose M2 ∈ N
such that 1

M2
< ε

4
. Let M = max{M1,M2}. We claim that d(yn, ym) < ε for

all n,m ≥ M (whence {yn} is Cauchy). Indeed, by quadrilateral inequality

we have

d(yn, ym) ≤ d(yn, zn) + d(zn, zm) + d(zm, ym) <
1

n
+
ε

2
+

1

m
≤ ε

2
+

2

M2

≤ ε.

Since {yn} is a Cauchy sequence in Y , by assumption it converges to some

z ∈ Z, so d(yn, z) → 0 as n → ∞. Since 0 ≤ d(zn, z) ≤ d(zn, yn) + d(yn, z)

and d(zn, yn)→ 0 by construction, by the squeeze theorem we conclude that

d(zn, z)→ 0 as n→∞, so {zn} converges to z.

Thus, we proved that every Cauchy sequence in Z converges in Z, so by

definition Z is complete.

4. Let X be a set, and let d1 and d2 be two different metrics on X. Given

x ∈ X and ε > 0, define N1
ε (x) = {y ∈ X : d1(y, x) < ε}, the ε-neighborhood

of x with respect to d1, and similarly define N2
ε (x) = {y ∈ X : d2(y, x) < ε}.

We will say that d1 and d2 are topologically equivalent if a subset S of X

is open with respect to d1 ⇐⇒ it is open with respect to d2. (Note: for

brevity, if d is a metric on X, we will say that S is d-open if S is open as a

subset of the metric space (X, d)).

(a) Prove that d1 and d2 are topologically equivalent if and only if for every

ε > 0 and every x ∈ X there exist δ1, δ2 > 0 (depending on both ε and

x) such that N1
δ1

(x) ⊆ N2
ε (x) and N2

δ2
(x) ⊆ N1

ε (x).

(b) Suppose that there exist real numbers A,B > 0 such that d1(x, y) ≤
Ad2(x, y) and d2(x, y) ≤ Bd1(x, y) for all x, y ∈ X. Use (a) to prove

that d1 and d2 are topologically equivalent.

(c) Now use (b) to prove that the Euclidean and Manhattan metrics on

Rn are topologically equivalent.

Solution: To simplify the terminology further, we will say that a set S is

d1-open if S is open with respect to d1 (and similarly for d2).

(a) “⇒” Assume that d1 and d2 are topologically equivalent. Take any ε >

0 and x ∈ X. We know that the set N2
ε (x) is d2-open, hence by assumption

it is also d1-open. By definition, the latter means that for any y ∈ N2
ε (x)
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there exists δ > 0 such that N1
δ (y) ⊆ N2

ε (x). In particular, this is true for

y = x, so there exists some δ1 > 0 such that N1
δ1

(x) ⊆ N2
ε (x). Similarly,

there must exist δ2 > 0 such that N2
δ2

(x) ⊆ N1
ε (x).

“⇐” Now assume that for every ε > 0 and every x ∈ X there exist

δ1, δ2 > 0 (depending on both ε and x) such that N1
δ1

(x) ⊆ N2
ε (x) and

N2
δ2

(x) ⊆ N1
ε (x).

Let U be any d1-open set, and take any x ∈ U . Then there must ex-

ist ε > 0 such that N1
ε (x) ⊆ U . By assumption, there exists δ2 > 0 such

that N2
δ2

(x) ⊆ N1
ε (x), so N2

δ2
(x) ⊆ U . This proves that U is d2-open. Simi-

larly, we argue that any d2-open set must be d1-open, whence d1 and d2 are

topologically equivalent.

(b) Take any ε > 0 and x ∈ X, and let δ1 = ε
B

. We claim that N1
δ1

(x) ⊆
N2
ε (x). Indeed, if y ∈ N1

δ1
(x), then d1(y, x) < δ1 = ε

B
, whence d2(y, x) ≤

Bd1(y, x) < ε, so y ∈ N2
ε (x). Similarly, the inclusion N2

δ2
(x) ⊆ N1

ε (x) always

holds for δ2 = ε
A

. Thus, we obtained the desired inclusion between open balls

with respect to d1 and d2, so by (a), d1 and d2 are topologically equivalent.

(c) Let us denote the Euclidean metric by dE and the Manhattan metric

by dM . We claim that for any x, y ∈ Rn we have

dE(x, y) ≤ dM(x, y) ≤
√
n · dE(x, y). (∗ ∗ ∗)

By (b), this would imply that dM and dE are equivalent.

Recall that if x = (x1, . . . , xn) and y = (y1, . . . , yn), then dM(x, y) =∑n
i=1 ai and dE(x, y) =

√∑n
i=1a

2
i where ai = |xi−yi|. Thus, we need to show

that for any non-negative real numbers a1, . . . , an, the following inequalities

hold: √√√√ n∑
i=1

a2i ≤
n∑
i=1

ai ≤
√
n ·

√√√√ n∑
i=1

a2i

The first inequality is easy: indeed, (
∑n

i=1 ai)
2 =

∑n
i=1 a

2
i + 2

∑
i<j aiaj ≥∑n

i=1 a
2
i , and taking square roots of both sides, we get the result.

The second inequality can be proved by direction computation using the

inequality 2ab ≤ a2 + b2 for all a, b ∈ R (which holds since a2 + b2 − 2ab =

(a− b)2 ≥ 0). A more conceptual way is to use Cauchy-Schwartz inequality

(see Theorem 9 on page 23 in Pugh). Pugh states the inequality in the (most

natural) vector form. The scalar form of the Cauchy-Schwartz inequality
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asserts that for any x1, . . . , xn, y1 . . . , yn ∈ R we have

n∑
i=1

xiyi ≤

√√√√ n∑
i=1

x2k ·

√√√√ n∑
i=1

y2k

Setting xi = 1 and yi = ai for all i, we get
∑n

i=1 ai ≤
√
n ·

√∑n
i=1a

2
i , exactly

what we needed to prove.

5.

(a) Theorem 40 in Pugh states the following: Let X, Y are metric metric

spaces, assume that X is a compact, and assume that f : X → Y is

continuous and bijective. Then f−1 : Y → X is also continuous. Give

a short proof of this theorem by combining Corollary 7.2, Theorem 8.4,

Theorem 9.2 and Theorem 11.1 from class (the respective references in

Pugh are Theorem 11, equivalence of (i) and (iii), Theorem 26, Theo-

rem 32 and Theorem 36).

(b)* Use (a) to show that there exist metric spaces X and Y and a function

f : X → Y such that f is continuous and bijective, but f−1 : Y → X

is not continuous (so that the assumption that X is compact in (a) is

essential).

Solution: (a) By Corollary 7.2 from class, to prove that f−1 : Y → X is

continuous, it suffices to prove that the preimage of any closed subset C of

X under f−1 is closed in Y ; in other words, we need to show that if C is

closed in X, then (f−1)−1(C) is closed in Y . Since f is bijective, we have

(f−1)−1(C) = f(C), so we need to show that if C is closed in X, then f(C)

is closed in Y .

So, suppose that C is closed in X. Since X is compact, by Theorem 9.2,

C is compact. Since f is continuous, by Theorem 11.1, f(C) is compact. Fi-

nally, by Theorem 8.4, a compact set is closed in any metric space containing

it, so f(C) is closed in Y . This completes the proof.

(b) Let X = R with discrete metric and Y = R with usual metric. We

claim that the identity function ι : X → Y has the required properties.

First observe that any subset of X is open: indeed, points (1 element

subsets) of X are open since N1(x) = {x} for all x ∈ X. And since any

subset S of X is the union of its points and arbitrary unions of open sets are

open, we conclude that any S ⊆ X is open.
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Next we claim that the identity function ι : X → Y is continuous. This

holds by Problem 5(b) in HW#3, but also follows immediately from Theo-

rem 7.1 and the above observation that any subset of X is open.

It is clear that ι is bijective.

Suppose that the inverse map ι−1 : Y → X is continuous. If S is any

subset of R, then S is open in X as observed above, so ι(S) = (ι−1)−1(S) is

open in Y by Theorem 7.1. But ι(S) = S as sets. It follows that any subset

of Y is open, which is clearly not the case (e.g. points in Y are not open).
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