
Solutions to Homework #4

1. Let f : A → B be a function. Give a detailed proof of the following

properties:

(a) f−1(U ∩ V ) = f−1(U) ∩ f−1(V ) for all U, V ⊆ B

(b) f(f−1(D)) ⊆ D for all D ⊆ B. Give an example showing that the

inclusion may be strict.

(c) f−1(f(C)) ⊇ C for all C ⊆ A. Give an example showing that the

inclusion may be strict.

Solution: (a) Since both sides of the equality are subsets of B, we need to

show that given any x ∈ B, we have

x ∈ f−1(U ∩ V ) ⇐⇒ x ∈ f−1(U) ∩ f−1(V ).

So let x ∈ B. Then x ∈ f−1(U ∩ V ) ⇐⇒ f(x) ∈ U ∩ V ⇐⇒
f(x) ∈ U and f(x) ∈ V ⇐⇒ x ∈ f−1(U) and x ∈ f−1(V ) ⇐⇒ x ∈
f−1(U) ∩ f−1(V ).

(b) If K and L are sets, to prove f(K) ⊆ L we need to show that f(x) ∈ L
for all x ∈ K. We need to check the latter condition in the case L = D and

K = f−1(D). But the assumption x ∈ K = f−1(D) means that f(x) ∈ D =

L just by definition of preimage, so we are done.

If f : A→ B is any non-surjective function andD = B, then f(f−1)(D) ⊆
f(A) 6= B = D (since f is not surjective).

(c) Let c ∈ C. Then f(c) ∈ f(C), so c ∈ {x ∈ A : f(x) ∈ f(C)}, and the

latter set is equal to f−1(f(C)) (by definition of preimage).

Let f : A → B be any non-injective function, so there exist a1 6= a2
in A with f(a1) = f(a2). If we take C = {a1}, then f(C) = {f(a1)}
and f−1(f(C)) contains at least two elements, a1 and a2, so in particular,

f−1(f(C)) 6= C.

2. Let {xn} be a sequence in a metric space (X, d), and let x be some

element of X. Prove that the following conditions are equivalent:

(i) some subsequence of {xn} converges to x
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(ii) for every ε > 0 there are infinitely many n for which xn ∈ Nε(x).

When proving the implication (ii)⇒(i) make it clear how you use that xn ∈
Nε(x) for infinitely many n (and not just for some n).

Solution: “(i)⇒ (ii)” Suppose that some subsequence {xnk
} converges

to x. Then for any ε > 0 there exists M ∈ N such that xnk
∈ Nε(x)

for all k ≥ M . In particular, xn ∈ Nε(x) for infinitely many n (namely

n = nM , nM+1, . . .)

“(ii)⇒ (i)” Now assume that (ii) holds. Then we can construct a sequence

of integers n1 < n2 < . . . s.t. xnk
∈ N1/k(x) for each k. The sequence is

constructed inductively as follows – once n1, . . . , nk−1 are chosen, using the

fact that xn ∈ N1/k(x) for infinitely many n, we can always choose one of

those n’s s.t. n > nk−1; this n will be our nk).

Since xnk
∈ N1/k(x), we have d(xnk

, x) < 1
k
. Hence d(xnk

, x) → 0 as

k →∞, and therefore {xnk
} converges to x.

3. Let K = { 1
n

: n ∈ N} ∪ {0}. Prove that K is covering compact in two

different ways:

(i) by showing that K is closed and bounded as a subset of R (We will

prove in class next week that a subset of R is covering compact if and

only if it is closed and bounded).

(ii) directly from definition of covering compactness.

Solution: (i) Clearly K is bounded since K ⊆ [0, 1] ⊂ (−1, 1) = N1(0).

Also note that

R \K = (−∞, 0) ∪ (1,+∞) ∪
∞⋃
n=1

(
1

n+ 1
,

1

n
).

Thus, R \K is a union of open intervals, hence R \K is open and therefore

K is closed.

(ii) Let {Uα} be an open cover of K (where we consider K as a subset

of R). Since 0 ∈ K, one of these sets, call it Uγ, must contain 0. Since Uγ
is open, there exists ε > 0 such that (−ε, ε) ⊆ Uγ. Now choose N ∈ N such

that N > 1
ε

(so that 1
N
< ε). Then (−ε, ε) contains 0 and 1

n
for all n ≥ N ,

so K ⊆ Uγ ∪ S where S = {1, 1
2
, . . . , 1

N
} (the important thing is that S is

finite).

Now for each integer 1 ≤ n ≤ N we can find αn such that 1
n
∈ Uαn . Then

K ⊆ Uγ ∪
⋃N
n=1 Uαn , so we found a finite subcover of our original cover.
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4. Let X be a metric space. Prove that X is covering compact ⇐⇒ X

satisfies the following property:

(*) Let {Kα} be any collection of closed subsets of X such that for any

finite subcollection Kα1 , . . . , Kαn , the intersection Kα1 ∩ . . . ∩ Kαn is

non-empty. Then the intersection of all sets in {Kα} is non-empty.

Solution: The above property (*) can be reformulated as follows (via con-

trapositive):

(**) Let {Kα} be any collection of closed subsets of X such that the inter-

section of all sets in {Kα} is empty. Then there is a finite subcollection

Kα1 , . . . , Kαn such that the intersection Kα1 ∩ . . . ∩Kαn is empty.

We will show that X is compact ⇐⇒ X satisfies (**).

“⇒” Suppose that X is compact, and let {Kα} be any collection of closed

subsets of X such that the intersection of all sets in {Kα} is empty. Define

Uα = X \Kα. Then each Uα is open, and the fact that ∩Kα = ∅ implies that

∪Uα = X, so {Uα} is an open cover of X. Since X is compact, there exist

α1, . . . , αn such that X = ∪ni=1Uαi
. Then ∩ni=1Kαi

= ∩ni=1(X \ Uαi
) = ∅, as

desired.

“⇐” Now assume that (**) holds. Take any open cover {Uα} of X, and

define Kα = X \ Uα. Then each Kα is closed in X, and since ∪Uα = X,

we have ∩Kα = ∅. By (**), we deduce that there exist α1, . . . , αn such that

∩ni=1Kαi
= ∅. Then X = ∪ni=1Uαi

, so {Uαi
}ni=1 is a finite subcover of {Uα}.

Thus we proved that X is compact.

5. Let X = C[a, b], considered as a metric space with uniform metric

dunif (as defined in Problem 4 in HW#2). Prove that the set B1(0), the

closed ball of radius 1 centered at 0 in X, is not sequentially compact. Here

0 is the function which is identically 0.

Solution: By Problem 7 in HW#2 there exists a sequence of functions

{fn} in X such that dunif (fn, fm) = 1 for all n 6= m. Moreover, an explicit

construction of such sequence given in online solutions shows that one can

choose fn ∈ B1(0). We claim that the sequence {fn} has no convergent

subsequences.

Indeed, suppose that {fnk
} is a convergent subsequence. Then {fnk

} is

also Cauchy, so (by the definition of Cauchy with ε = 1), there exists M ∈ R
such that dunif (fnk

, fnl
) < 1 for all k, l ≥ M . This is clearly a contradiction

since dunif (fnk
, fnl

) = 1 whenever k 6= l.
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Recall that the notion of an ultrametric metric space was introduced in

HW#3.7. The following problem gives an interesting example of an ultra-

metric metric space.

6. Let p be a fixed prime number. Define the function | · |p : Q → R≥0
as follows: given a nonzero x ∈ Q, we can write x = pa c

d
for some a, c, d ∈ Z

where c and d are not divisible by p . Define |x|p = p−a (note that the

above representation is not unique, but it is easy to see that a is uniquely

determined by x). For instance,

∣∣∣∣ 9

20

∣∣∣∣
p

=


1
9

if p = 3
4 if p = 2
5 if p = 5
1 for any other p.

Also define |0|p = 0. Now define the function dp : Q×Q→ R≥0 by dp(x, y) =

|y − x|p.

(a) Prove that (Q, dp) is an ultrametric space. (Note: the completion of

this metric space is usually denoted by Qp is called p-adic numbers).

(b) Describe explicitly the set N1(0) (the open ball of radius 1 centered at

0) in (Q, dp).

(c) Let d be the standard metric on Q (that is, d(x, y) = |y − x| where

| · | is the usual absolute value). Give examples of sequences {xn} and

{yn} in Q such that

(i) xn → 0 in (Q, dp) but {xn} is unbounded as a sequence in (Q, d)

(ii) yn → 0 in (Q, d) but {yn} is unbounded as a sequence in (Q, dp)

Solution: (a) Take any x, y, z ∈ Qp, and let u = y − x, v = z − y, so that

u+ v = z − x. Thus, we need to prove that

|u+ v|p ≤ max{|u|p, |v|p} for all u, v ∈ Qp.

The inequality is clear if u = 0, v = 0 or u + v = 0, so from now on we will

assume that u, v, u+ v 6= 0.

Write u = pa · c
d

and v = pb · e
f

where p - c, d, e, f . By symmetry, without

loss of generality we can assume that a ≥ b. Then

u+ v = pb · (pa−b c
d

+
e

f
) = pb · p

a−bcf + de

df
.
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Since p - d and p - f , we have p - df . We do not know whether pa−bcf + de

is divisible by p, but in any case we can write pa−bcf + de = pg · h for some

g, h ∈ Z with g ≥ 0 and p - h. Then u+ v = pb+g h
df

, so

|u+ v|p =
1

pb+g
≤ 1

pb
= |v|p ≤ max{|u|p, |v|p}.

(b) N1(0) consists of 0 and all rational numbers m
n

such that gcd(m,n) = 1

and p | m.

(c) The sequences xn = pn and yn = 1
pn

have the required properties.

7. Let X be an arbitrary metric space and f : X → R a continuous

function (where R is equipped with standard metric).

(i) Prove that the sets {x ∈ X : f(x) > 0} and {x ∈ X : f(x) < 0} are

open and the set {x ∈ X : f(x) = 0} is closed

(ii) Prove that if g : X → R is another continuous function, then the set

{x ∈ X : f(x) = g(x)} is closed

Solution: (i) By definition {x ∈ X : f(x) > 0} = f−1((0,+∞)) (the

preimage of (0,+∞) under f), {x ∈ X : f(x) < 0} = f−1((−∞, 0)) and

{x ∈ X : f(x) = 0} = f−1({0}). Since (0,+∞) and (−∞, 0) are open

subsets of R and {0} is a closed subset of R, the result follows from the fact

that preimages of open (resp. closed) sets under continuous functions are

open (resp. closed).

(ii) Note that {x ∈ X : f(x) = g(x)} = {x ∈ X : f(x)− g(x) = 0}. Since

the function f − g is continuous by Theorem 4.9 in Rudin, the result follows

from (i).

Remark: The result of part (ii) remains true if g is a continuous function

from X to Y where Y is an arbitrary metric space. However, the above

argument does not work in this generality since addition or subtraction may

not be defined in Y (and even if they are defined in some way, Theorem 4.9

from Rudin is not applicable).
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