Solutions to Homework #4

1. Let f: A — B be a function. Give a detailed proof of the following
properties:

(a) fFHUNV)=fYU)nfY(V)forall U,V C B

(b) f(f~Y(D)) € D for all D C B. Give an example showing that the
inclusion may be strict.

(c) f7Yf(C)) 2 C for all C C A. Give an example showing that the
inclusion may be strict.

Solution: (a) Since both sides of the equality are subsets of B, we need to
show that given any x € B, we have

refHUNV) &= v f U NfFHV).

Solet z € B. Thenzx € f7{(UNV) < f(z) e UNV <+
flx) e Uand f(z) € V < x € ff{(U)and z € (V) <= =z €
Oy ).

(b) If K and L are sets, to prove f(K) C L we need to show that f(z) € L
for all z € K. We need to check the latter condition in the case L = D and
K = f~Y(D). But the assumption z € K = f~!(D) means that f(z) € D =
L just by definition of preimage, so we are done.

If f : A — Bis any non-surjective function and D = B, then f(f~')(D) C
f(A) # B = D (since f is not surjective).

(c) Let c € C. Then f(c) € f(C),soce{x e A: f(x) e f(C)}, and the
latter set is equal to f~1(f(C)) (by definition of preimage).

Let f : A — B be any non-injective function, so there exist a; # as
in A with f(a1) = f(a). If we take C' = {a1}, then f(C) = {f(a1)}
and f~1(f(C)) contains at least two elements, a; and as, so in particular,
) #£¢.

2. Let {z,} be a sequence in a metric space (X,d), and let x be some
element of X. Prove that the following conditions are equivalent:

(i) some subsequence of {x,} converges to x
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(ii) for every € > 0 there are infinitely many n for which z,, € N.(z).

When proving the implication (ii)=-(i) make it clear how you use that z,, €
N.(z) for infinitely many n (and not just for some n).

Solution: “(i)= (ii)” Suppose that some subsequence {z,, } converges
to . Then for any € > 0 there exists M € N such that z,, € N.(z)
for all & > M. In particular, z, € N.(z) for infinitely many n (namely
n =N, A4, - - )

“(ii)= (i)” Now assume that (ii) holds. Then we can construct a sequence
of integers n; < ny < ... s.t. z, € Nl/k(x) for each k. The sequence is
constructed inductively as follows — once nq,...,n;_; are chosen, using the
fact that x, € Ny(z) for infinitely many n, we can always choose one of
those n’s s.t. n > ny_q; this n will be our ng).

Since x,, € Nij(z), we have d(z,,,z) < Hence d(z,,,x) — 0 as

1
E.
k — oo, and therefore {x,, } converges to x.

3. Let K = {1 :n e N}U{0}. Prove that K is covering compact in two

different ways:

(i) by showing that K is closed and bounded as a subset of R (We will
prove in class next week that a subset of R is covering compact if and
only if it is closed and bounded).

(ii) directly from definition of covering compactness.

Solution: (i) Clearly K is bounded since K C [0,1] C (—1,1) = Ny(0).
Also note that

1
n+1’

).

S|

R\ K = (—00,0) U (1,+00)U G(

Thus, R\ K is a union of open intervals, hence R \ K is open and therefore
K is closed.

(ii) Let {U,} be an open cover of K (where we consider K as a subset
of R). Since 0 € K, one of these sets, call it U,, must contain 0. Since U,
is open, there exists ¢ > 0 such that (—¢,¢) C U,. Now choose N € N such
that N > £ (so that 1 < ¢). Then (—¢,¢) contains 0 and = for all n > N,
so K C U, U S where S = {1, %, ce %} (the important thing is that S is
finite).

Now for each integer 1 < n < N we can find «,, such that % € U,,. Then
KCcU,U Uflvzl Us,,, so we found a finite subcover of our original cover.
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4. Let X be a metric space. Prove that X is covering compact <= X
satisfies the following property:

(*) Let {K,} be any collection of closed subsets of X such that for any
finite subcollection K,,,..., K,,, the intersection K,, N...N K,, is
non-empty. Then the intersection of all sets in {K,} is non-empty.

Solution: The above property (*) can be reformulated as follows (via con-
trapositive):

(**) Let {K,} be any collection of closed subsets of X such that the inter-
section of all sets in {K,} is empty. Then there is a finite subcollection
K,,,...,K,, such that the intersection K,, N... N K,, is empty.

We will show that X is compact <= X satisfies (**).

“=" Suppose that X is compact, and let { K, } be any collection of closed
subsets of X such that the intersection of all sets in {K,} is empty. Define
U, = X\ K,. Then each U, is open, and the fact that NK, = () implies that
UU, = X, so {U,} is an open cover of X. Since X is compact, there exist
ai,...,q, such that X = U U,,. Then N7 K,, = N (X \ U,,) = 0, as
desired.

“<” Now assume that (**) holds. Take any open cover {U,} of X, and
define K, = X \ U,. Then each K, is closed in X, and since UU, = X,
we have NK, = (. By (**), we deduce that there exist ay,...,a, such that
N, K,, = 0. Then X = U U,,, so {U,,}, is a finite subcover of {U,}.
Thus we proved that X is compact.

5. Let X = Cla,bl], considered as a metric space with uniform metric
dunis (as defined in Problem 4 in HW#2). Prove that the set B;(0), the
closed ball of radius 1 centered at 0 in X, is not sequentially compact. Here
0 is the function which is identically 0.

Solution: By Problem 7 in HW#2 there exists a sequence of functions
{fn} in X such that dynif(fn, fr) = 1 for all n # m. Moreover, an explicit
construction of such sequence given in online solutions shows that one can
choose f, € B1(0). We claim that the sequence {f,} has no convergent
subsequences.

Indeed, suppose that {f,, } is a convergent subsequence. Then {f,, } is
also Cauchy, so (by the definition of Cauchy with £ = 1), there exists M € R
such that dypnif(fn,, fn,) < 1 for all k,1 > M. This is clearly a contradiction
since dynif(foys fr,) = 1 whenever k # [.



Recall that the notion of an ultrametric metric space was introduced in
HW+#3.7. The following problem gives an interesting example of an ultra-
metric metric space.

6. Let p be a fixed prime number. Define the function |- |, : Q — Rxg
as follows: given a nonzero z € Q, we can write z = p*§ for some a,c,d € Z
where ¢ and d are not divisible by p . Define |z|, = p~* (note that the
above representation is not unique, but it is easy to see that a is uniquely
determined by z). For instance,

1 .

g ifp=3
91 _ )4 ifp=2
20, ] 5 ifp=5

1 for any other p.

Also define |0], = 0. Now define the function d, : Q x Q — Rx¢ by d,(z,y) =
ly — zlp.

(a) Prove that (Q,d,) is an ultrametric space. (Note: the completion of
this metric space is usually denoted by Q, is called p-adic numbers).

(b) Describe explicitly the set Ni(0) (the open ball of radius 1 centered at
0) in (Q,d,).

(c) Let d be the standard metric on Q (that is, d(z,y) = |y — x| where
| - | is the usual absolute value). Give examples of sequences {x,} and
{yn} in Q such that

(i) z, = 0in (Q,d,) but {z,} is unbounded as a sequence in (Q, d)
(ii) y, — 0in (Q,d) but {y,} is unbounded as a sequence in (Q, d,)

Solution: (a) Take any z,y,z € Q,, and let u =y —x, v = z — y, so that
u+ v =z — x. Thus, we need to prove that

lu + v, < max{|ul,, |v|,} for all u,v € Q,.

The inequality is clear if u =0, v = 0 or v+ v = 0, so from now on we will
assume that u, v, u +v # 0.

Write v = p® - 5 and v = p° - ? where p{ ¢, d, e, f. By symmetry, without
loss of generality we can assume that a > b. Then

b p*bef + de

wbC €
utv=p"- ("' =+ ) =p i

d f
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Since p { d and p 1 f, we have p { df. We do not know whether p®~’cf + de
is divisible by p, but in any case we can write p®~bcf + de = p? - h for some
g,h € Z with ¢ > 0 and pth. Then u+ v :prrQ%, SO

1
< =

g < o5 = [Vl < max{uly, [vlp}-

lu 4|, =
(b) N1(0) consists of 0 and all rational numbers ™ such that ged(m,n) = 1
and p | m.

(¢) The sequences z,, = p™ and ¥y, = # have the required properties.

7. Let X be an arbitrary metric space and f : X — R a continuous
function (where R is equipped with standard metric).

(i) Prove that the sets {x € X : f(z) > 0} and {z € X : f(x) < 0} are
open and the set {z € X : f(x) = 0} is closed

(ii) Prove that if g : X — R is another continuous function, then the set
{r e X: f(z)=g(x)} is closed

Solution: (i) By definition {z € X : f(z) > 0} = f~1((0,400)) (the
preimage of (0,+o00) under f), {x € X : f(z) < 0} = f~1((—00,0)) and
{r € X : f(z) = 0} = f1{0}). Since (0,+0c) and (—o0,0) are open
subsets of R and {0} is a closed subset of R, the result follows from the fact
that preimages of open (resp. closed) sets under continuous functions are
open (resp. closed).

(ii) Note that {z € X : f(z) = g(2)} ={z € X : f(x) — g(x) = 0}. Since
the function f — g is continuous by Theorem 4.9 in Rudin, the result follows
from (i).

Remark: The result of part (ii) remains true if g is a continuous function
from X to Y where Y is an arbitrary metric space. However, the above
argument does not work in this generality since addition or subtraction may
not be defined in Y (and even if they are defined in some way, Theorem 4.9
from Rudin is not applicable).



