
Solutions to Homework #3.

1. Given a metric space (X, d), a point x ∈ X and ε > 0, define Bε(x) =

{y ∈ X : d(y, x) ≤ ε}, called the closed ball of radius ε centered at x.

(a) Prove that Bε(x) is always a closed subset of X.

(b) Deduce from (a) that Nε(x) ⊆ Bε(x), that is, the closure of the open

ball of radius ε centered at x is contained in the respective closed

ball.

(c) Is it always true that Nε(x) = Bε(x)? Prove or give a counterexam-

ple.

Solution: (a) By definition, it suffices to show that X \Bε(x) is open.

Take any z ∈ X \ Bε(x). Then d(z, x) > ε, so if set δ = d(z, x)− ε, then

δ > 0. Now take any y ∈ Nδ(z). Then d(z, x) ≤ d(y, x)+d(z, y) < d(y, x)+δ,

whence d(y, x) > d(z, x)−δ = d(z, x)−(d(z, x)−ε) = ε. Hence y ∈ X\Bε(x).

Thus, we showed that for any z ∈ X \ Bε(x), there is δ > 0 such that

Nδ(z) ⊆ X \Bε(x), so by definition, X \Bε(x) is open.

Another solution for (a): Here is a completely different solution to

(a) which uses the fact that the preimage of a closed set under a continuous

function is closed. Indeed, fix x ∈ X, and define the function f : X → R
by f(y) = d(y, x). By Problem 6 in this homework, f is continuous. Note

that Bε(x) = {y ∈ X : f(y) ≤ ε} = f−1((−∞, ε]). Since (−∞, ε] is a closed

subset of R and f is continuous, the preimage f−1((−∞, ε]) is a closed subset

of X, as desired.

(b) By Theorem 5.1(c) from class, any closed subset of X which contains

Nε(x) must also contain Nε(x). By (a), Bε(x) is a closed subset (which

obviously contains Nε(x)), so Nε(x) ⊆ Bε(x).

(c) No. For instance, take any set X with |X| ≥ 2 and let d be the

discrete metric on X (d(x, y) = 1 if x 6= y and d(x, y) = 0 if x = y).

Then for any x ∈ X we have N1(x) = B1/2(x) = {x} (one element set

consisting of the point x itself). Thus, the set {x} is both open and closed

since it is simultaneously an open ball and a closed ball (in fact, it is easy

to show that any subset of X is both open and closed). In particular,

N1(x) = N1(x) = {x}. On the other hand, the closed ball B1(x) is the

entire space X, so B1(x) 6= N1(x) since |X| ≥ 2.
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2. Let X be a metric space, and let Z ⊆ Y be subsets of X. Prove that

Z is closed as a subset of Y ⇐⇒ Z = Y ∩K for some closed subset K of

X. Deduce that if Z is closed in X, then Z is closed in Y .

Solution: “⇒” Assume that Z is closed in Y . Then Y \Z is open in Y ,

so by the inheritance principle for open sets, there exists G open in X such

that Y \ Z = Y ∩G. Then

Z = Y \ (Y \ Z) = Y \ (Y ∩G) = Y \G = Y ∩ (Y \G) = Y ∩ (X \G),

and X \ G is closed in X. Thus, if we set K = X \ G, then K is closed in

X and Y = K ∩X.

“⇐” Assume that Z = Y ∩K where K is closed in X. Then, by a similar

computation Y \Z = Y ∩G where G = X \K. Then G is open in X, so by

the inheritance principle, Y \ Z is open in Y and hence Z is closed in Y .

Finally, since Z ⊂ Y , we can always write Z = Y ∩Z, so if Z is closed in

X, applying the above criterion, we deduce that Z is closed in Y .

3. Let (X, d) be a non-empty metric space and S a subset of X. Prove

that the following three conditions are equivalent (as defined in class, S is

called bounded if it satisfies either of those conditions):

(i) There exists x ∈ X and R ∈ R such that S ⊆ NR(x).

(ii) For any x ∈ X there exists R ∈ R such that S ⊆ NR(x).

(iii) The set {d(s, t) : s, t ∈ S} is bounded above as a subset of R.

Solution: “(ii)⇒ (i)” This is clear since X 6= ∅.
“(iii)⇒ (ii)” Let K be an upper bound for {d(s, t) : s, t ∈ S}. Take any

x ∈ X. If S = ∅, there is nothing to prove. If S 6= ∅, fix some s0 ∈ S

and let R = K + 1 + d(s0, x). Then for any s ∈ S we have d(s, x) ≤
d(s, s0) + d(s0, x) ≤ K + d(s0, x) < R, so S ⊆ NR(x).

“(i)⇒ (iii)” Suppose that S ⊆ NR(x) for some x ∈ X and M ∈ R. Then

for any s, t ∈ S we have d(s, x) < R and d(x, t) < R, so by the triangle

inequality d(s, t) < 2R. So the set {d(s, t) : s, t ∈ S} is bounded above by

2R.

Definition: Let (X, d) be a metric space and ε > 0. A subset S of X is

called an ε-net if for any x ∈ X there exists s ∈ S such that d(x, s) < ε. In

other words, S is an ε-net if X is the union of open balls of radius ε centered

at elements of S.

4. Let S be a subset of a metric space (X, d). Prove that the following

are equivalent:

(i) The closure of S is the entire X;

(ii) U ∩ S 6= ∅ for any non-empty open subset U of X;
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(iii) S is an ε-net for every ε > 0.

The subset S is called dense (in X) if it satisfies these equivalent conditions.

Solution: As suggested in the hint, we will prove that negations of (i),

(ii) and (iii) are equivalent to each other. We start by explicitly formulating

the negations, denoted below by (a), (b) and (c)

(a) The closure of S is strictly contained in X, that is, there exists x ∈ X
which is NOT a contact point of S

(b) There exists a non-empty open subset U of X such that U ∩ S = ∅
(c) There exists ε > 0 such that S is not an ε-net.

Now we prove that (a), (b) and (c) are equivalent

“(a)⇒ (b)” If x ∈ X is not a contact point of S, there exists ε > 0 such

that Nε(x)∩S = ∅. This means that (b) holds with U = Nε(x) (since Nε(x)

is open and non-empty).

“(b)⇒ (a)” Take any x ∈ U (such x exists since U is non-empty). Since

U is also open, there exists ε > 0 such that Nε(x) ⊆ U . Since U ∩ S = ∅,
we must have Nε(x) ∩ S = ∅, so x is not a contact point of S.

“(a)⇒ (c)” As in implication “(a)⇒ (b)”, there exists x ∈ X and ε > 0

such that Nε(x) ∩ S = ∅. This means that d(s, x) ≥ ε for all s ∈ S, so S is

not an ε-net.

“(c)⇒ (a)” Analogous to the proof of “(a)⇒ (c)”.

5. Let X be any set with discrete metric (d(x, y) = 1 if x 6= y and

d(x, y) = 0 if x = y), and let Y be an arbitrary metric space.

(a) Let {xn} be a sequence in X. Prove that {xn} converges if and only

if it is eventually constant, that is, there exists M ∈ N and x ∈ X
such that xn = x for all n ≥M .

(b) Prove that any function f : X → Y is continuous in two different

ways: first using sequential definition of continuity and then using

the ε-δ definition.

Solution: (a) “⇐” Suppose that there exists M ∈ N and x ∈ X such that

xn = x for all n ≥ M . Then for any ε > 0 we have d(xn, x) = 0 < ε for

all n ≥ M , so {xn} converges to x. Of course, this direction holds in any

metric space.

“⇒” Now suppose that {xn} converges to x. By the definition of limit

with ε = 1, there exists M ∈ N such that d(xn, x) < 1 for all n ≥ M . But

since the only possible values of d are 0 and 1, the inequality d(xn, x) < 1

forces d(xn, x) = 0 and hence xn = x. Thus, xn = x for all n ≥ M , as

desired.
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(b) Using the ε-δ definition. Fix an arbitrary a ∈ X. Given any ε > 0,

choose δ = 1. If x ∈ X and d(a, x) < 1, we must have x = a and hence

f(x) = f(a), so dY (f(x), f(a)) = 0 < ε. Thus, f is continuous at a, and

since a ∈ X was arbitrary, f is continuous on X.

Using the sequential definition. Again fix a ∈ X, and take any sequence

{xn} in X which converges to a. By (a), there exists M ∈ N such that

xn = a for all n ≥M . Then f(xn) = f(a) for all n ≥M and (again by (a)),

{f(xn)} converges to f(a), whence f is continuous at a.

6.

(a) Let (X, dX) and (Y, dY ) be metric spaces, and let f : X → Y be a

function such that

dY (f(u), f(v)) ≤ dX(u, v) for all u, v ∈ X. (∗ ∗ ∗)

Prove that f is continuous.

(b) Let (X, d) be a metric space, and fix a ∈ X. Use (a) to prove that

the function f : X → R (where R is equipped with the usual metric)

given by f(x) = d(a, x) is continuous. Warning: be careful with

absolute values.

Solution: (a) Given any ε > 0, choose δ = ε. If u, v ∈ X with dX(u, v) < δ,

then by (***) we have dY (f(u), f(v)) ≤ dX(u, v) < δ = ε. Thus, by the ε-δ

definition, f is continuous.

(b) In the notations of (a) we have dX = d and dY (y1, y2) = |y1− y2|. By

(a), to prove continuity of f it suffices to check that |f(u)− f(v)| ≤ d(u, v)

for all u, v ∈ X or equivalently,

|d(a, u)− d(a, v)| ≤ d(u, v) for all u, v ∈ X

Note that for any real number t the absolute value |t| is equal to max{t,−t}.
Thus, if we want to prove |t| ≤ r where r is another real number, this is

equivalent to showing that t ≤ r and −t ≤ r.
By the triangle inequality, d(a, u) ≤ d(a, v)+d(v, u) = d(a, v)+d(u, v) and

d(a, v) ≤ d(a, u) + d(u, v). Hence d(a, u)− d(a, v) ≤ d(u, v) and −(d(a, u)−
d(a, v)) = d(a, v)−d(a, u) ≤ d(u, v). Therefore, using the above observation

with t = d(a, u) − d(a, v) and r = d(u, v), we conclude that |d(a, u) −
d(a, v)| ≤ d(u, v), as desired.

7. A metric space (X, d) is called ultrametric if for any x, y, z ∈ X the

following inequality holds:

d(x, z) ≤ max{d(x, y), d(y, z)}.
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(Note that this inequality is much stronger than the triangle inequality).

If X is any set and d is the discrete metric on X (that is, d(x, y) = 1 if

x 6= y and d(x, y) = 0 if x = y), then clearly (X, d) is ultrametric. A more

interesting example of an ultrametric space is given in the next problem.

Prove that properties (i) and (ii) below hold in any ultrametric space

(X, d) (note that both properties are counter-intuitive since they are very

far from being true in R).

(i) Take any x ∈ X, ε > 0 and take any y ∈ Nε(x). Then Nε(y) =

Nε(x). This means that if we take an open ball of fixed radius around

some point x, then for any other point y from that open ball, the

open ball of the same radius, but now centered at y, coincides with

the original ball. In other words, any point of an open ball happens

to be its center.

(ii) Prove that a sequence {xn} in X is Cauchy ⇐⇒ for any ε > 0

there exists M ∈ N such that d(xn+1, xn) < ε for all n ≥M . Note:

The forward implication holds in any metric space.

Solution: (i) Let d = d(x, y). Since y ∈ Nε(x), we have d < ε. Take

any z ∈ Nε(y). Then d(y, z) < ε, so d(z, x) ≤ max{d(y, z), d(x, y)} =

max{d(y, z), d} < ε, so z ∈ Nε(x). Thus we showed that Nε(y) ⊆ Nε(x).

The reverse inclusion Nε(x) ⊆ Nε(y) is proved similarly.

(ii) The forward implication is clear. Assume now that for any ε > 0

there exists M ∈ N such that d(xn+1, xn) < ε for all n ≥ M . Then

for all n ≥ M we also have d(xn+2, xn+1) < ε whence d(xn+2, xn) ≤
max{d(xn+1, xn), d(xn+2, xn+1)} < ε. Repeating the same trick several

times, we deduce that d(xn+p, xn) < ε for all n ≥ M and p ≥ 0; equiv-

alently, d(xm, xn) < ε for all n,m ≥ M . Therefore, the sequence {xn} is

Cauchy.


