
Solutions to Homework #2

1. Let A be an uncountable set and B a countable subset of A.

(a) Prove that A \B is uncountable.

(b) Prove that A and A \B have the same cardinality.

Solution: (i) Suppose that A \ B is countable. Then, A = (A \ B) ∪ B
is a union of two countable sets, hence A is countable, contrary to our

hypothesis.

(ii) As suggested in the hint, let C be a countably infinite subset of A \B
(such C exists by Theorem 12 on page 33 in Pugh). Since B is countable

and C is countably infinite, their union B ∪ C is also countably infinite, so

there is a bijection φ : C → B ∪ C. Now define the map f : A \B → A by

f(x) =

{
x if x ∈ (A \B) \ C
φ(x) if x ∈ C.

It is clear that f is a bijection from A \B to A.

2. Let X and Y be any sets, and define XY to be the set of all functions

f : Y → X. Prove that if |X| ≥ 2, then Y and XY do not have the same

cardinality.

Solution: We prove this by contradiction. Assume that Y and XY have

the same cardinality, that is, there exists a bijection f : Y → XY . For each

y ∈ Y define αy ∈ X by αy = (f(y))(y), the value of the function f(y) ∈ XY

at the point y. Since |X| ≥ 2, for each y ∈ Y we can choose an element

βy ∈ X such that βy 6= αy. Now define the function b ∈ XY by setting

b(y) = βy for each y ∈ Y .

Since f is a bijection, there must exist y ∈ Y such that b = f(y). But

then b and f(y) have the same value at every point; in particular, b(y) =

(f(y))(y). The latter is impossible since b(y) = βy 6= αy = (f(y))(y).

3. Solution: (1) First we claim that if A1, . . . , An is a finite collection

of countable sets, their Cartesian product A1 ×A2 × . . .×An is countable.

This was proved in class for n = 2, and the general case follows from the

case n = 2 by induction (check details!)

(2) For each n ∈ Z≥0 let Zn denote the set of polynomials with integer

coefficients of degree at most n. Let Zn+1 = Z× . . .× Z︸ ︷︷ ︸
n+1 times

be the Carte-

sian product of n + 1 copies of Z. Define the function f : Zn+1 → Zn by
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f((c0, . . . , cn)) =
n∑
k=0

ckx
k. Then f is surjective (by definition of Zn); also, f

is injective since two polynomials are equal if and only if they have the same

coefficients in every degree. Thus, f is bijective. Since Zn+1 is countable by

(1) above, we conclude that Zn is also countable.

(3) By definition, the set of all polynomials with integer coefficients is

equal to ∪∞n=0Zn. Since each Zn is countable by (2), ∪∞n=0Zn is a count-

able union of countable sets, hence ∪∞n=0Zn is countable (by Lecture 3 or

Corollary 18 on page 36 in Pugh).

(4) Finally, denote the set of all polynomials with integer coefficients by

Z. For each polynomial p ∈ Z let Ap be the set of its roots. Then by

definition the set of all algebraic numbers is
⋃
p∈Z

Ap. Since each Ap is finite

and Z is countable by (3), we can conclude that
⋃
p∈Z

Ap is a countable union

of finite sets, so it is countable.

4. Let a ≤ b be real numbers and X = C[a, b], the set of all continuous

functions from [a, b] to R. Define the functions dunif : X × X → R≥0 and

dint : X ×X → R≥0 by

dunif (f, g) = max
t∈[a,b]

|f(t)− g(t)| and dint(f, g) =

b∫
a

|f(t)− g(t)| dt.

(a) Prove that (X, dunif ) is a metric space (the metric dunif is called the

uniform metric)

(b) (practice) Prove that (X, dint) is a metric space (the metric dint is

called the integral metric)

Solution: (a) Since the absolute value of a real number cannot be negative,

we always have dunif (f, g) ≥ 0. Also dunif (f, g) = 0 ⇐⇒ max
t∈[a,b]

|f(t) −

g(t)| = 0 ⇐⇒ f(t) − g(t) = 0 for all t ∈ [a, b] ⇐⇒ f = g as functions.

Thus we verified (MS1)

(MS2) follows from the fact that | − x| = |x| for all x ∈ R. Indeed,

dunif (f, g) = max
t∈[a,b]

|f(t)−g(t)| = max
t∈[a,b]

|−(f(t)−g(t))| = max
t∈[a,b]

|g(t)−f(t)| =

dunif (g, f).

It remains to prove (MS3), the triangle inequality. Take any f, g, h ∈ X =

C[a, b]. Then for any t ∈ [a, b] we have |f(t)−h(t)| ≤ |f(t)−g(t)|+|g(t)−h(t)|
by the triangle inequality in R. Since

|f(t)− g(t)| ≤ max
s∈[a,b]

|f(s)− g(s)| = dunif (f, g)
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and similarly |g(t) − h(t)| ≤ dunif (g, h), we conclude that |f(t) − h(t)| ≤
dunif (f, g) + dunif (g, h). Since this is true for any t, we have

dunif (f, h) = max
t∈[a,b]

|f(t)− h(t)| ≤ dunif (f, g) + dunif (g, h).

(b) As in (a), it is clear that dint(f, g) ≥ 0 for all f, g. But unlike (a), it

is no longer clear that dint(f, g) > 0 whenever f 6= g, so let us prove this.

So assume f, g ∈ C[a, b] with f 6= g, and let u(t) = |f(t) − g(t)|. Then u

is a non-negative continuous function on [a, b] and u is not identically zero

(since f 6= g). Moreover, there exist c ∈ (a, b) (open interval) such that

u(c) > 0. By continuity there exists δ > 0 such that (c − δ, c + δ) ⊆ [a, b]

and u(t) > u(c)
2 for all t ∈ (c− δ, c+ δ). We have

dint(f, g) =

b∫
a

u(t) dt =

c−δ∫
a

u(t) dt+

c+δ∫
c−δ

u(t) dt+

b∫
c+δ

u(t) dt.

The first and third integrals are non-negative (since u is non-negative) and

the second integral is bounded below by u(c)
2 · ((c+ δ)− (c− δ)) = u(c)δ > 0.

Thus, dint(f, g) > 0, as desired.

The second axiom (dint(f, g) = dint(g, f)) is proved similarly to (a). Fi-

nally, the triangle inequality follows by integrating both sides of the in-

equality |f(t) − h(t)| ≤ |f(t) − g(t)| + |g(t) − h(t)| from a to b (and using

the property that if u, v ∈ C[a, b] are such that u(t) ≤ v(t) for all t ∈ [a, b],

then
b∫
a
u(t) dt ≤

b∫
a
v(t) dt).

5. Let (X, d) be a metric space and S is a subset of X. Prove that S is

open ⇐⇒ S is the union of some collection of open balls (which could be

centered at different points).

Solution: The backwards direction is clear since (as proved in class) each

open ball is an open set and the union of any collection of open sets is open.

For the forward direction, assume that S is open. Then for every x ∈ S

there is εx > 0 such that Nεx(x) ⊆ S. We claim that S = ∪x∈SNεx(x).

Indeed, the union on the right-hand side is contained in S since each Nεx(x)

is contained in S. On the other hand, since Nεx(x) always contains x, the

union ∪x∈SNεx(x) contains S, so we proved the reverse inclusion.

6. Let (X, d) be a metric space and S a subset of X.

(i) Recall from Lecture 4 that a point x ∈ X is called a contact point

of S if Nε(x) ∩ S 6= ∅ for all ε > 0

(ii) A point x ∈ X is called an interior point of S if there exists ε > 0

such that Nε(x) ⊆ S



4

The set of all contact points of S is denoted by S and the set of all interior

points of S is denoted by So.

(a) Prove that the set So is always open.

(b) Let x ∈ S. Prove that x is a contact point of S ⇐⇒ x is not an

interior point of X \ S.

(c) Use (a) and (b) to prove that the set S is always closed (using the

definition of a closed set given in class).

Solution: (a) Take any x ∈ So. By definition this means that there is

ε > 0 such that Nε(x) ⊆ S. We claim that Nε(x) is actually contained in

So. Indeed, take any y ∈ Nε(x). Since Nε(x) is open, there exists δ > 0

such that Nδ(y) ⊆ Nε(x). But Nε(x) ⊆ S, so Nδ(y) ⊆ S, hence by definition

y ∈ So.
Thus, we showed that every point in Nε(x) lies in So, so Nε(x) ⊆ So,

hence by definition So is open.

Note: The set So may very well be empty even if S is pretty big. For

instance, if X = R and S is the set of all irrational numbers, then So = ∅.
(b) (x is a contact point of S) ⇐⇒ (Nε(x)∩S 6= ∅ for every ε > 0) ⇐⇒

(Nε(x) 6⊆ X \ S for every ε > 0) ⇐⇒ (x is not an interior point of X \ S).

(c) By (a),(X \ S)o is open, hence its complement X \ (X \ S)o is closed.

But X \ (X \ S)o is equal to S by (b), which finishes the proof.

7. Let X = C[a, b] and d = dunif (as defined in Problem 4). Find an

(infinite) sequence f1, f2, . . . of elements of X such that d(fi, fj) = 1 for all

i 6= j.

Solution: Given real numbers r, s satisfying a ≤ r ≤ s ≤ b, define Ir,s to

the unique function satisfying the following properties:

(i) Ir,s(t) = 0 for t ∈ [a, r] and for t ∈ [s, b]

(ii) Ir,s(
r+s
2 ) = 1 (note that r+s

2 is the midpoint of [r, s])

(iii) Ir,s is linear on each of the intervals [r, r+s2 ] and [ r+s2 , s].

(Draw the graph!) It is clear that each function fr,s is continuous (one

can easily write down an explicit piecewise formula for Ir,s, but this is not

necessary for this problem). It is also clear that if (r, s) and (r′, s′) are

disjoint open intervals then the d(Ir,s, Ir′,s′) = 1.

Thus, to solve the problem we just need to choose an infinite collection

of pairwise disjoint open intervals (ri, si) inside [a, b] and let fi = Iri,si . For

instance, we can let (ri, si) = (a+ b−a
i+1 , a+ b−a

i ) for each i ∈ N.


