
Solutions to Homework #1 (except 1.4 and 1.6(b))

Problems:

1. Prove that C (complex numbers) cannot be made an ordered field (no

matter how the order relation < is defined). Note: in class we proved this

for lexicographic order; the general proof is not much more complicated.

Solution: We argue by contradiction. Suppose C is an ordered field with

respect to some order <. Since i 6= 0, by axiom (O1) we have i > 0 or 0 > i.

Case 1: i > 0. By (OF2), we have i2 > 0, that is, −1 > 0. Using (OF2)

again, we have (−1)2 > 0, that is, 1 > 0. On the other hand, adding 1 to

both sides of −1 > 0 (which we can by (OF1)), we get 0 > 1. Thus, 1 > 0

and 0 > 1, which contradicts (O1).

Case 2: 0 > i. By (OF1) we have 0 + (−i) > i + (−i), so −i > 0. By

(OF2) we get −1 = (−i)2 > 0, and we can proceed exactly as in Case 1 to

reach a contradiction.

2. Let S be a nonempty subset of R bounded above, and let −S = {−x :

x ∈ S}. Prove that −S is bounded below and inf(−S) = − sup(S).

Solution: Take any y ∈ −S. By definition y = −x for some x ∈ S.

Since sup(S) is an upper bound for S, we have x ≤ sup(S) and hence y =

−x ≥ − sup(S). This proves that −S is bounded below and − sup(S) is a

lower bound for −S.

It remains to show that − sup(S) is the greatest lower bound for −S, that

is, z ≤ − sup(S) for any lower bound for −S. So let z be any lower bound

for −S. Since −S contains every element of the form −x with x ∈ S, we

have z ≤ −x for all x ∈ S and hence −z ≥ x for all x ∈ S. Thus, −z is

an upper bound for S, so by definition of sup(S) we have −z ≥ sup(S) and

hence z ≤ − sup(S), as desired.

3. Let S be an ordered set and A and B subsets of S such that

(i) a ≤ b for any a ∈ A and b ∈ B;

(ii) sup(A) and inf(B) exist in S.

Prove that sup(A) ≤ inf(B).
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Solution: Take any b ∈ B. Condition (i) implies that b is an upper

bound for A and hence sup(A) ≤ b. Since this is true for every b ∈ B, we

deduce that sup(A) is a lower bound for B and hence sup(A) ≤ inf(B).

5. Give a detailed and rigorous proof of the fact that

lim
n→∞

2n + 3

3n + 4
=

2

3

directly from the definition of limit of a sequence.

Solution: First note that∣∣∣∣2n + 3

3n + 4
− 2

3

∣∣∣∣ =

∣∣∣∣ 1

9n + 12

∣∣∣∣ =
1

9n + 12
<

1

n
. (∗ ∗ ∗)

Now take any ε > 0. By the Archimedan property of R, we can find

N ∈ N such that N > 1
ε
. If we now take any natural number n ≥ N , then

by (***) we have ∣∣∣∣2n + 3

3n + 4
− 2

3

∣∣∣∣ < 1

n
≤ 1

N
< ε,

which proves that lim
n→∞

2n+3
3n+4

= 2
3

by the definition of limit.

6. Let S = {x ∈ Q : x <
√

2}. Prove by contradiction that S does not

have a supremum in Q in two ways:

(a) Assuming the existence of R and the fact that Q is dense in R, that is,

every non-empty open interval in R contains a rational number

(b) (bonus) using just Q. For this problem use the description of S which

does not involve
√

2, e.g. S = {x ∈ Q : x < 0 or x2 < 2}.

Solution for (a): Suppose that sup(S) exists in Q. We know that√
2 6∈ Q, so either sup(S) <

√
2 or sup(S) >

√
2.

First suppose sup(S) <
√

2. By the density of Q, the interval (sup(S),
√

2)

contains some q ∈ Q. But then q <
√

2 (so q ∈ S) and q > sup(S), so sup(S)

is not an upper bound for S, a contradiction.

Now suppose sup(S) >
√

2. Then by density we can find q ∈ Q in the

interval (
√

2, sup(S)). Then s <
√

2 < q for all s ∈ S, so q is an upper bound

for S and q < sup(S), so sup(S) is not the LEAST upper bound, again a

contradiction.

Remark: There were several papers where the following argument was

made: since
√

2 is an upper bound for S (by definition), if S does have a

supremum in Q, denoted sup(S), it must be true that sup(S) ≤
√

2. However,
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this conclusion is not valid since
√

2 6∈ Q, so the inequality sup(S) >
√

2

would not contradict the definition of the least upper bound.

In fact, the following example shows that the inequality sup(S) >
√

2 is

actually possible. Indeed, let T = S ∪ {2}, the set of all elements of S with

the number 2 added. If we consider S as a subset of T , then S has the least

upper bound in T , namely 2 (in fact, 2 is the only upper bound for S in T ).

7. Deduce the Intermediate Value Theorem and Extreme Value Theorems

directly from the following four results (which will be proved later in the

course):

(1) Let I = [a, b] be a closed bounded interval in R, and consider I as a

metric space with the standard metric (d(x, y) = |x − y|). Then I is

compact and connected.

(2) Let S ⊆ R be a subset which is both compact and connected (again

with respect to the standard metric). Then S = ∅ or S = [a, b] for

some a, b ∈ R with a ≤ b.

(3) Let X and Y be metric spaces and f : X → Y be a continuous function.

If X is connected, then f(X) is connected (as usual f(X) = {f(x) :

x ∈ X} is the image (=range) of f).

(4) Let X and Y be metric spaces and f : X → Y be a continuous function.

If X is compact, then f(X) is compact.

Solution: Let f : I = [a, b] → R be a continuous function. By (1) I is

compact and connected. By (3) and (4) f(I) is compact and connected (and

non-empty since it contains f(a)) and hence by (2) f(I) = [m,M ] for some

m,M ∈ R with m ≤M .

Now we can prove both EVT and IVT. We start with EVT. Since f(I) =

[m,M ] and m,M ∈ [m,M ], there exist c, d ∈ I such that f(c) = m and

f(d) = M . Again since f(I) = [m,M ], for all x ∈ I we have m ≤ f(x) ≤M ,

that is, f(c) ≤ f(x) ≤ f(d), which proves EVT.

Now we prove IVT. Take any r ∈ R, which lies between f(a) and f(b).

WOLOG assume f(a) ≤ f(b). Then f(a) ≤ r ≤ f(b), m ≤ f(a) ≤ M and

m ≤ f(b) ≤ M , whence m ≤ f(a) ≤ r ≤ f(b) ≤ M . Thus, r ∈ [m,M ] =

f(I), so there exists e ∈ I such that f(e) = r. This proves IVT.
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