Solutions to Homework $\#1$ (except 1.4 and 1.6(b)) Problems:

1. Prove that $\mathbb C$ (complex numbers) cannot be made an ordered field (no matter how the order relation \lt is defined). Note: in class we proved this for lexicographic order; the general proof is not much more complicated.

Solution: We argue by contradiction. Suppose $\mathbb C$ is an ordered field with respect to some order \langle . Since $i \neq 0$, by axiom (O1) we have $i > 0$ or $0 > i$.

Case 1: $i > 0$. By (OF2), we have $i^2 > 0$, that is, $-1 > 0$. Using (OF2) again, we have $(-1)^2 > 0$, that is, $1 > 0$. On the other hand, adding 1 to both sides of $-1 > 0$ (which we can by (OF1)), we get $0 > 1$. Thus, $1 > 0$ and $0 > 1$, which contradicts (O1).

Case 2: $0 > i$. By (OF1) we have $0 + (-i) > i + (-i)$, so $-i > 0$. By (OF2) we get $-1 = (-i)^2 > 0$, and we can proceed exactly as in Case 1 to reach a contradiction.

2. Let S be a nonempty subset of R bounded above, and let $-S = \{-x :$ $x \in S$. Prove that $-S$ is bounded below and $\inf(-S) = -\sup(S)$.

Solution: Take any $y \in -S$. By definition $y = -x$ for some $x \in S$. Since sup(S) is an upper bound for S, we have $x \le \text{sup}(S)$ and hence $y =$ $-x \ge -\sup(S)$. This proves that $-S$ is bounded below and $-\sup(S)$ is a lower bound for $-S$.

It remains to show that $-\sup(S)$ is the greatest lower bound for $-S$, that is, z ≤ − sup(S) for any lower bound for −S. So let z be any lower bound for $-S$. Since $-S$ contains every element of the form $-x$ with $x \in S$, we have $z \leq -x$ for all $x \in S$ and hence $-z \geq x$ for all $x \in S$. Thus, $-z$ is an upper bound for S, so by definition of $\sup(S)$ we have $-z \geq \sup(S)$ and hence $z \leq -\sup(S)$, as desired.

3. Let S be an ordered set and A and B subsets of S such that

(i) $a \leq b$ for any $a \in A$ and $b \in B$;

(ii) sup(A) and inf(B) exist in S.

Prove that $\sup(A) \leq \inf(B)$.

Solution: Take any $b \in B$. Condition (i) implies that b is an upper bound for A and hence $\sup(A) \leq b$. Since this is true for every $b \in B$, we deduce that $\sup(A)$ is a lower bound for B and hence $\sup(A) \leq \inf(B)$.

5. Give a detailed and rigorous proof of the fact that

$$
\lim_{n \to \infty} \frac{2n+3}{3n+4} = \frac{2}{3}
$$

directly from the definition of limit of a sequence.

Solution: First note that

$$
\left|\frac{2n+3}{3n+4} - \frac{2}{3}\right| = \left|\frac{1}{9n+12}\right| = \frac{1}{9n+12} < \frac{1}{n}.\tag{***}
$$

Now take any $\varepsilon > 0$. By the Archimedan property of R, we can find $N \in \mathbb{N}$ such that $N > \frac{1}{\varepsilon}$. If we now take any natural number $n \geq N$, then by $(***)$ we have

$$
\left|\frac{2n+3}{3n+4}-\frac{2}{3}\right|<\frac{1}{n}\leq\frac{1}{N}<\varepsilon,
$$

which proves that $\lim_{n \to \infty} \frac{2n+3}{3n+4} = \frac{2}{3}$ $\frac{2}{3}$ by the definition of limit.

6. Let $S = \{x \in \mathbb{Q} : x < \sqrt{2}\}$. Prove by contradiction that S does not have a supremum in $\mathbb Q$ in two ways:

- (a) Assuming the existence of $\mathbb R$ and the fact that $\mathbb Q$ is dense in $\mathbb R$, that is, every non-empty open interval in R contains a rational number
- (b) (bonus) using just $\mathbb Q$. For this problem use the description of S which (bonds) using just \mathcal{Q} . For this problem use the description
does not involve $\sqrt{2}$, e.g. $S = \{x \in \mathbb{Q} : x < 0 \text{ or } x^2 < 2\}$.

Solution for (a): Suppose that $\sup(S)$ exists in Q. We know that **Solution for (a).** Suppose that $\sup(S) < \sqrt{2}$ or $\sup(S) > \sqrt{2}$.

First suppose $\sup(S)$ < $\sqrt{2}$. By the density of Q, the interval $(\text{sup}(S), \sqrt{2})$ 2) r itst suppose sup(S) < v 2. By the density of $\mathcal Q$, the interval $(\sup(S), \sup(S))$
contains some $q \in \mathbb Q$. But then $q < \sqrt{2}$ (so $q \in S$) and $q > \sup(S)$, so $\sup(S)$ is not an upper bound for S, a contradiction.

Now suppose $\sup(S)$ $\sqrt{2}$. Then by density we can find $q \in \mathbb{Q}$ in the interval $(\sqrt{2}, \sup(S))$. Then $s < \sqrt{2} < q$ for all $s \in S$, so q is an upper bound for S and $q < \text{sup}(S)$, so $\text{sup}(S)$ is not the LEAST upper bound, again a contradiction.

Remark: There were several papers where the following argument was made: since $\sqrt{2}$ is an upper bound for S (by definition), if S does have a supremum in Q, denoted sup(S), it must be true that $\sup(S) \leq \sqrt{2}$. However,

this conclusion is not valid since $\sqrt{2} \notin \mathbb{Q}$, so the inequality sup $(S) > \sqrt{2}$ $\overline{2}$ would not contradict the definition of the least upper bound. √

In fact, the following example shows that the inequality $\sup(S)$ 2 is actually possible. Indeed, let $T = S \cup \{2\}$, the set of all elements of S with the number 2 added. If we consider S as a subset of T , then S has the least upper bound in T, namely 2 (in fact, 2 is the only upper bound for S in T).

7. Deduce the Intermediate Value Theorem and Extreme Value Theorems directly from the following four results (which will be proved later in the course):

- (1) Let $I = [a, b]$ be a closed bounded interval in R, and consider I as a metric space with the standard metric $(d(x, y) = |x - y|)$. Then I is compact and connected.
- (2) Let $S \subseteq \mathbb{R}$ be a subset which is both compact and connected (again with respect to the standard metric). Then $S = \emptyset$ or $S = [a, b]$ for some $a, b \in \mathbb{R}$ with $a \leq b$.
- (3) Let X and Y be metric spaces and $f : X \to Y$ be a continuous function. If X is connected, then $f(X)$ is connected (as usual $f(X) = \{f(x) :$ $x \in X$ is the image (=range) of f).
- (4) Let X and Y be metric spaces and $f : X \to Y$ be a continuous function. If X is compact, then $f(X)$ is compact.

Solution: Let $f : I = [a, b] \rightarrow \mathbb{R}$ be a continuous function. By (1) I is compact and connected. By (3) and (4) $f(I)$ is compact and connected (and non-empty since it contains $f(a)$ and hence by (2) $f(I) = [m, M]$ for some $m, M \in \mathbb{R}$ with $m \leq M$.

Now we can prove both EVT and IVT. We start with EVT. Since $f(I)$ = $[m, M]$ and $m, M \in [m, M]$, there exist $c, d \in I$ such that $f(c) = m$ and $f(d) = M$. Again since $f(I) = [m, M]$, for all $x \in I$ we have $m \le f(x) \le M$, that is, $f(c) \leq f(x) \leq f(d)$, which proves EVT.

Now we prove IVT. Take any $r \in \mathbb{R}$, which lies between $f(a)$ and $f(b)$. WOLOG assume $f(a) \leq f(b)$. Then $f(a) \leq r \leq f(b)$, $m \leq f(a) \leq M$ and $m \le f(b) \le M$, whence $m \le f(a) \le r \le f(b) \le M$. Thus, $r \in [m, M]$ $f(I)$, so there exists $e \in I$ such that $f(e) = r$. This proves IVT.