Solutions to Homework #1 (except 1.4 and 1.6(b))

Problems:

1. Prove that \mathbb{C} (complex numbers) cannot be made an ordered field (no matter how the order relation < is defined). Note: in class we proved this for lexicographic order; the general proof is not much more complicated.

Solution: We argue by contradiction. Suppose \mathbb{C} is an ordered field with respect to some order <. Since $i \neq 0$, by axiom (O1) we have i > 0 or 0 > i.

Case 1: i > 0. By (OF2), we have $i^2 > 0$, that is, -1 > 0. Using (OF2) again, we have $(-1)^2 > 0$, that is, 1 > 0. On the other hand, adding 1 to both sides of -1 > 0 (which we can by (OF1)), we get 0 > 1. Thus, 1 > 0 and 0 > 1, which contradicts (O1).

Case 2: 0 > i. By (OF1) we have 0 + (-i) > i + (-i), so -i > 0. By (OF2) we get $-1 = (-i)^2 > 0$, and we can proceed exactly as in Case 1 to reach a contradiction.

2. Let S be a nonempty subset of \mathbb{R} bounded above, and let $-S = \{-x : x \in S\}$. Prove that -S is bounded below and $\inf(-S) = -\sup(S)$.

Solution: Take any $y \in -S$. By definition y = -x for some $x \in S$. Since $\sup(S)$ is an upper bound for S, we have $x \leq \sup(S)$ and hence $y = -x \geq -\sup(S)$. This proves that -S is bounded below and $-\sup(S)$ is a lower bound for -S.

It remains to show that $-\sup(S)$ is the greatest lower bound for -S, that is, $z \leq -\sup(S)$ for any lower bound for -S. So let z be any lower bound for -S. Since -S contains every element of the form -x with $x \in S$, we have $z \leq -x$ for all $x \in S$ and hence $-z \geq x$ for all $x \in S$. Thus, -z is an upper bound for S, so by definition of $\sup(S)$ we have $-z \geq \sup(S)$ and hence $z \leq -\sup(S)$, as desired.

3. Let S be an ordered set and A and B subsets of S such that

(i) $a \leq b$ for any $a \in A$ and $b \in B$;

(ii) $\sup(A)$ and $\inf(B)$ exist in S.

Prove that $\sup(A) \leq \inf(B)$.

Solution: Take any $b \in B$. Condition (i) implies that b is an upper bound for A and hence $\sup(A) \leq b$. Since this is true for every $b \in B$, we deduce that $\sup(A)$ is a lower bound for B and hence $\sup(A) \leq \inf(B)$.

5. Give a detailed and rigorous proof of the fact that

$$\lim_{n \to \infty} \frac{2n+3}{3n+4} = \frac{2}{3}$$

directly from the definition of limit of a sequence.

Solution: First note that

$$\left|\frac{2n+3}{3n+4} - \frac{2}{3}\right| = \left|\frac{1}{9n+12}\right| = \frac{1}{9n+12} < \frac{1}{n}.$$
 (***)

Now take any $\varepsilon > 0$. By the Archimedan property of \mathbb{R} , we can find $N \in \mathbb{N}$ such that $N > \frac{1}{\varepsilon}$. If we now take any natural number $n \ge N$, then by (***) we have

$$\left|\frac{2n+3}{3n+4} - \frac{2}{3}\right| < \frac{1}{n} \le \frac{1}{N} < \varepsilon,$$

which proves that $\lim_{n\to\infty}\frac{2n+3}{3n+4}=\frac{2}{3}$ by the definition of limit.

6. Let $S = \{x \in \mathbb{Q} : x < \sqrt{2}\}$. Prove by contradiction that S does not have a supremum in \mathbb{Q} in two ways:

- (a) Assuming the existence of R and the fact that Q is dense in R, that is, every non-empty open interval in R contains a rational number
- (b) (bonus) using just \mathbb{Q} . For this problem use the description of S which does not involve $\sqrt{2}$, e.g. $S = \{x \in \mathbb{Q} : x < 0 \text{ or } x^2 < 2\}$.

Solution for (a): Suppose that $\sup(S)$ exists in \mathbb{Q} . We know that $\sqrt{2} \notin \mathbb{Q}$, so either $\sup(S) < \sqrt{2}$ or $\sup(S) > \sqrt{2}$.

First suppose $\sup(S) < \sqrt{2}$. By the density of \mathbb{Q} , the interval $(\sup(S), \sqrt{2})$ contains some $q \in \mathbb{Q}$. But then $q < \sqrt{2}$ (so $q \in S$) and $q > \sup(S)$, so $\sup(S)$ is not an upper bound for S, a contradiction.

Now suppose $\sup(S) > \sqrt{2}$. Then by density we can find $q \in \mathbb{Q}$ in the interval $(\sqrt{2}, \sup(S))$. Then $s < \sqrt{2} < q$ for all $s \in S$, so q is an upper bound for S and $q < \sup(S)$, so $\sup(S)$ is not the LEAST upper bound, again a contradiction.

Remark: There were several papers where the following argument was made: since $\sqrt{2}$ is an upper bound for S (by definition), if S does have a supremum in \mathbb{Q} , denoted $\sup(S)$, it must be true that $\sup(S) \leq \sqrt{2}$. However,

this conclusion is not valid since $\sqrt{2} \notin \mathbb{Q}$, so the inequality $\sup(S) > \sqrt{2}$ would not contradict the definition of the least upper bound.

In fact, the following example shows that the inequality $\sup(S) > \sqrt{2}$ is actually possible. Indeed, let $T = S \cup \{2\}$, the set of all elements of S with the number 2 added. If we consider S as a subset of T, then S has the least upper bound in T, namely 2 (in fact, 2 is the only upper bound for S in T).

7. Deduce the Intermediate Value Theorem and Extreme Value Theorems directly from the following four results (which will be proved later in the course):

- (1) Let I = [a, b] be a closed bounded interval in \mathbb{R} , and consider I as a metric space with the standard metric (d(x, y) = |x y|). Then I is compact and connected.
- (2) Let $S \subseteq \mathbb{R}$ be a subset which is both compact and connected (again with respect to the standard metric). Then $S = \emptyset$ or S = [a, b] for some $a, b \in \mathbb{R}$ with $a \leq b$.
- (3) Let X and Y be metric spaces and $f : X \to Y$ be a continuous function. If X is connected, then f(X) is connected (as usual $f(X) = \{f(x) : x \in X\}$ is the image (=range) of f).
- (4) Let X and Y be metric spaces and $f : X \to Y$ be a continuous function. If X is compact, then f(X) is compact.

Solution: Let $f : I = [a, b] \to \mathbb{R}$ be a continuous function. By (1) I is compact and connected. By (3) and (4) f(I) is compact and connected (and non-empty since it contains f(a)) and hence by (2) f(I) = [m, M] for some $m, M \in \mathbb{R}$ with $m \leq M$.

Now we can prove both EVT and IVT. We start with EVT. Since f(I) = [m, M] and $m, M \in [m, M]$, there exist $c, d \in I$ such that f(c) = m and f(d) = M. Again since f(I) = [m, M], for all $x \in I$ we have $m \leq f(x) \leq M$, that is, $f(c) \leq f(x) \leq f(d)$, which proves EVT.

Now we prove IVT. Take any $r \in \mathbb{R}$, which lies between f(a) and f(b). WOLOG assume $f(a) \leq f(b)$. Then $f(a) \leq r \leq f(b)$, $m \leq f(a) \leq M$ and $m \leq f(b) \leq M$, whence $m \leq f(a) \leq r \leq f(b) \leq M$. Thus, $r \in [m, M] = f(I)$, so there exists $e \in I$ such that f(e) = r. This proves IVT.