
Solutions to Homework #11

Notation: Throughout the entire solutions the Lebesgue measure will be

denoted by µ. This is done to avoid confusion with the standard notations

mk and Mk that naturally arise in Problems 2 and 4. In Problem 4 where we

have to simultaneously work with the Lebesgue measures on R and R2 we

denote by µ1 the Lebesgue measure on R and by µ2 the Lebesgue measure

on R2.

1. Let X be a metric space and A ⊆ X. Then

• A is a called an Fσ-set if A is countable union of closed sets.

• A is a called a Gδ-set if A a countable intersection of open sets.

(i) Prove that A is an Fσ-set ⇐⇒ X \A is a Gδ-set.

(ii) Prove that the collection of all Fσ-sets in X is closed under countable

unions and the collection of all Gδ-sets in X is closed under countable

intersections.

(iii)* Let X = R (with standard metric). Prove that every open subset of

X is an Fσ-set and every closed subset of X is a Gδ-set.

Solution: (i) This follows directly from the de Morgan laws (∪∞n=1An)c =

∩∞n=1A
c
n and (∩∞n=1An)c = ∪∞n=1A

c
n and the fact that complements of open

sets are closed (and vice versa). Here Y c = X \ Y , the complement of Y in

X.

(ii) Suppose that B is a countable union of Fσ-sets, that is, B = ∪∞n=1Bn

where each Bn is an Fσ-set, so Bn = ∪∞n=1Bn,m where each Bn,m is closed.

Note that we can write B =
⋃

(n,m)∈N×N
Bn,m. Since N × N is countable, it

follows that B is a countable union of closed sets, so by definition B is an

Fσ-set. Thus, the collection of all Fσ-sets in X is closed under countable

unions. Similarly, the collection of all Gδ-sets in X is closed under countable

intersections.

(iii) First we show that every open interval in R is an Fσ-set. Indeed, if

I = (a, b) with a, b ∈ R, we can write I = ∪∞n=1[a + 1
n , b −

1
n ] (where we

adopt the convention that [c, d] = ∅ if c > d). If I = (a,+∞), we write

I = ∪∞n=1[a + 1
n ,+∞) (all the intervals on the right-hand side are closed);

for I = (−∞, b) we write I = ∪∞n=1(−∞, b − 1
n ], and finally (−∞,+∞) is

already closed.

By Problem 7 in HW#6, every open subset of R is at most countable

union of open intervals. Since we already proved that open intervals are
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Fσ-sets, the result follows from (ii) (here we use the fact that a finite union

of Fσ-sets can also be written as a countable union of Fσ-sets since we can

write A = ∪∞n=1A).

2. Let D : R→ R be the Dirichlet function (defined by D(x) = 1 if x ∈ Q
and 0 if x 6∈ Q), and let a < b be real numbers.

(a) Prove that D is Lebesgue-integrable on [a, b] and that
∫

[a,b]

Ddm = 0.

(b) Prove that D is not Riemann-integrable on [a, b].

Solution: (a) The image of D has two elements 0 and 1. The set A1 =

{x ∈ [a, b] : D(x) = 1} = [a, b] ∩ Q is measurable and has measure 0 since

it is countable, hence the set A0 = {x ∈ [a, b] : D(x) = 0} = [a, b] \ A1 is

also measurable with µ(A0) = µ([a, b]) = µ(A1) = b − a. Therefore, D is

Lebesgue-integrable and
∫

[a,b]

Ddµ = 0·µ(A0)+1·µ(A1) = 0·(b−a)+1·0 = 0.

(b) Let P be an arbitrary partition of [a, b] into intervals I1, . . . , In with

lengths 4x1, . . . ,4xn. Since each Ik contains both rational and irrational

numbers, we have Mk = 1 and mk = 0 where (in Pugh’s notation from p.

166) Mk = sup{D(x) : x ∈ Ik} and mk = inf{D(x) : x ∈ Ik}. Hence the

upper sum U(D,P ) =
∑n

k=1Mk4xk =
∑n

k=14xk = b − a and the lower

sum L(D,P ) =
∑n

k=1mk4xk = 0. Thus, inf{U(D,P )}, the infimum of

upper sums over all partitions, is larger than sup{L(D,P )}, the supremum of

lower sums over all partitions, so by definition D is not Riemann/Darboux-

integrable.

3. Let {fn : [a, b] → R}∞n=1 be a sequence of measurable functions, and

let A be the set of all x ∈ [a, b] such that {fn(x)} converges. Prove that A

is measurable.

Solution: Following the hint, given n,m, k ∈ N let

An,m,k =

{
x ∈ [a, b] : |fn(x)− fm(x)| < 1

k

}
.

First we show that each An,m,k is measurable. Indeed, if we fix n and m

and let g = fn,m, then

An,m,k =

{
{x ∈ [a, b] : −1

k
< g(x) <

1

k

}
= g< 1

k
∩ g>− 1

k
.

Since fn and fm are measurable, g = fn−fm is also measurable by Lemma 24.2.

By definition of a measurable function and Lemma 24.1 the sets g< 1
k

and
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g>− 1
k

are both measurable, and finally their intersection is measurable by

Lemma 22.3.

Once we know that each An,m,k is measurable, Theorem 23.1 immediately

implies that the set
∞⋂
k=1

∞⋃
N=1

∞⋂
n,m=N

An,m,k (∗)

is measurable. It remains to show that the set given by (*) is equal to the

set {x ∈ [a, b] : {fn(x)} converges }.
Indeed, take any x ∈ [a, b]. By the Cauchy criterion, the sequence {fn(x)}

converges ⇐⇒ {fn(x)} is Cauchy ⇐⇒
∀ ε > 0 ∃N ∈ N such that |fn(x)− fm(x)| < ε for all n,m ≥ N. (**)

Since for every ε > 0 there exists k ∈ N such that 1
k < ε, it is enough to

require (**) for ε of the form 1
k . In other words, {fn(x)} converges ⇐⇒

for every k ∈ N there exists N ∈ N such that |fn(x) − fm(x)| < 1
k for all

n,m ≥ N or, equivalently,

∀ k ∈ N ∃N ∈ N such that ∀ n,m ≥ N we have x ∈ An,m,k . (***)

Finally, the definitions of unions and intersections immediately imply that

x satisfies (***) ⇐⇒ x lies in the set given by (*), which completes the

proof.

4. Given a function f : [a, b]→ R, let Γ(f) be the graph of f , that is,

Γ(f) = {(x, f(x)) : x ∈ [a, b]} ⊂ R2.

In each part of this problem prove that Γ(f) has measure 0 (each part is a

generalization of the previous part, but please do not deduce (a) from (b)

or (b) from (c) as there are easier constructions that work for (a) and (b))

(a) f(x) = x

(b) f is an arbitrary continuous function

(c) f is an arbitrary measurable function

Solution: As mentioned at the beginning, in this problem we will denote

the Lebesgue measure on R by µ1 and the Lebesgue measure on R2 by µ2.

We will use analogous notations for outer measures.

In all 3 parts we will use the following criterion.

Claim 1: Let A ⊆ R2 be a set, and suppose that for every ε > 0 there exists

a countable cover {Ak} of A such that
∑
k

µ∗2(Ak) < ε. Then µ∗2(A) = 0 (and

hence A is measurable and has measure 0 by Observation 22.2).
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Remark: The sets Ak in the claim could be arbitrary; they do not even

need to be measurable.

Proof of Claim 1: Let ε > 0. By hypotheses, there exists a countable collec-

tion {Ak} such that A ⊆
⋃
k

Ak and
∑
k

µ∗2(Ak) < ε. By (the 2-dimensional

version of) Lemma 21.1(a)(c) we have µ∗2(A) ≤ µ∗2(
⋃
k

Ak) ≤
∑
k

µ∗2(Ak), and

so µ∗2(A) < ε. Since ε is arbitrary, it follows that µ∗2(A) = 0. �

In each part we will prove that Γ(f) has measure 0 using Claim 1.

(a) Let ε > 0 and choose n ∈ N such that (b−a)2
n < ε. Let A1, . . . , An

be the squares with side length b−a
n such that the left-lower vertex of A1 is

at the point (a, a) and for each k ≥ 2, the left-lower vertex of Ak coincides

with the right-upper vertex of Ak−1 (thus, all Ak have their left-lower and

right-upper vertices on Γ(f), and the right-upper vertex of An is at (b, b)).

It is clear that Γ(f) ⊆ ∪Ak and
n∑
k=1

µ∗2(Ak) = n · (b−a)
2

n2 = (b−a)2
n < ε, so

we are done by Claim 1.

(b) Let ε > 0. Since f is uniformly continuous, there exists δ > 0 such

that |f(x) − f(y)| < ε
b−a whenever |x − y| < δ. Now choose n ∈ N such

that b−a
n < δ. For each 0 ≤ k ≤ n let xk = a + k · b−an . For 1 ≤ k ≤ n

let Mk = max{f(x) : x ∈ [xk−1, xk]} and mk = min{f(x) : x ∈ [xk−1, xk]},
and let Ak be the rectangle whose left-lower vertex is (xk−1,mk) and whose

right-upper vertex is (xk,Mk).

As in (a) the construction ensures that Γ(f) ⊆ ∪Ak. By the choice of δ we

have Mk −mk ≤ ε
b−a , so µ∗2(Ak) <

b−a
n

ε
b−a = ε

n and hence
n∑
k=1

µ∗2(Ak) < ε,

and again we are done by Claim 1.

(c) Let ε > 0, and fix n such that b−a
n < ε.

For each k ∈ Z let Ik = {x ∈ [a, b] : k
n ≤ f(x) < k+1

n }. Since f is mea-

surable, each Ik is measurable. By construction [a, b] is equal to the disjoint

union tk∈ZIk, so by countable additivity we have
∑
k∈Z

µ1(Ik) = µ1([a, b]) =

b− a.

Now let Ak = Ik × [ kn ,
k+1
n ]. It is clear from the construction that Γ(f) ⊆⋃

k∈Z
Ak.

By Theorem 23.2, each Ak is measurable (as a subset of R2) and µ2(Ak) =

µ1(Ik)µ1([
k
n ,

k+1
n ]) = µ1(Ik)

n . Hence
∑
k∈Z

µ2(Ak) = 1
n

∑
k∈Z

µ1(Ik) = b−a
n < ε,

and we are done as in previous cases.
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5. Let C be the standard Cantor set, and let H : [0, 1] → [0, 1] be the

Cantor function AKA the Devil staircase function (see p.187 in Pugh).

(a) Prove that µ(H(C)) = 1. This shows that a continuous function

may send a set of measure zero to a set of positive measure.

(b) Compute
∫

[0,1]

H dm.

(c) (bonus) Modify the construction of H to show that for every ε > 0

there exists a strictly increasing continuous function fε : [0, 1] →
[0, 1] such that µ(Hε(C)) > 1− ε.

Solution: (a) Since H is a non-decreasing continuous function with H(0) =

0 andH(1) = 1, by the intermediate value theorem we haveH([0, 1]) = [0, 1].

Next note that H([0, 1]) = H(C) ∪ H([0, 1] \ C), and by construction

H([0, 1]\C) ⊂ Q. Hence if we set A = H([0, 1]\C), then A ⊆ [0, 1] ⊆ A∪Q,

and therefore A∆[0, 1] ⊆ Q.

Since µ∗(Q) = 0, we have µ∗(A∆[0, 1]) = 0. Since the set [0, 1] is ele-

mentary, A is measurable (by definition). Also, since [0, 1] ⊆ A∪ ([0, 1]∆A),

we have 1 = µ([0, 1]) ≤ µ(A) + µ([0, 1]∆A) = µ(A); on the other hand,

A ⊆ [0, 1], so µ(A) ≤ µ([0, 1]) = 1. Combining the two inequalities, we

conclude that µ(A) = 1, as desired.

(b) By Theorem 26.2(e) we have
∫

[0,1]

H dµ =
∫
C

H dµ +
∫

[0,1]\C
H dµ, and

since µ(C) = 0 we have
∫
C

H dµ = 0 by Theorem 26.2(d).

For convenience denote by G the restriction of H to [0, 1] \ C. It is clear

that G is a simple function, so
∫

[0,1]\C
H dµ =

∫
[0,1]\C

Gdµ can be computed

simply by computing the sum of a suitable series.

Note that Im (G) consists of all rational numbers in (0, 1) with denomina-

tor a power of 2. For each c ∈ Im (G) denote Ac = {x ∈ [0, 1]\C : G(x) = c}.
By definition of G we have µ(A1/2) = 1/3, µ(A1/4) = µ(A3/4) = 1/9,

µ(A1/8) = µ(A3/8) = µ(A5/8) = µ(A7/8) = 1/27, . . . , Therefore,

∫
[0,1]

g dµ =
∑

c∈Im (g)

c · µ(Ac) = 1
3 ·

1
2 + 1

9 · (
1
4 + 3

4) + 1
27 · (

1
8 + 3

8 + 5
8 + 7

8) + . . .

=

∞∑
k=0

2k−1

3k+1
=

1

6

∞∑
k=0

(23)k = 1
6 ·

1
1−2/3 = 1

2 .

6. (practice) Kolmogorov-Fomin, Problem 6 after Section 28 (p.292)
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Solution: First we consider the special case where fn → f everywhere

(pointwise), not just almost everywhere. First we explain why the sets

Ek(δ) = {x : |fk(x)− f(x)| ≥ δ} are measurable.

Since each fk is measurable and fk → f pointwise, f is measurable by

Lemma 24.3. Then fk − f is measurable (for any fixed k) by Lemma 24.2,

whence |fk−f | is also measurable (see the argument in Problem 3). Finally,

using Lemma 24.2 again we deduce that the sets Ek(δ) are measurable. Since

countable unions and countable intersections of measurable sets are measur-

able, we deduce that the sets Rn(δ) = ∪∞k=nEk(δ) and M = ∩∞n=1Rn(δ) are

also measurable.

Next we claim that M = ∅ (recall that so far we assume that fn → f

everywhere). Indeed, suppose that x ∈ M . Then x ∈ Rn(δ) for all n ∈ N.

Since Rn(δ) = ∪∞k=nEk(δ), it follows that for any n ∈ N there exists k > n

such that |fk(x) − f(x)| ≥ δ. This clearly implies that fk(x) does not

converge to f(x), contrary to our assumption.

Thus, ∩∞n=1Rn(δ) = ∅. Since clearly R1(δ) ⊇ R2(δ) ⊇ . . ., by Theorem 11

in KF, Section 25, we deduce that µ(Rn(δ)) → µ(∅) = 0. Since En(δ) ⊆
Rn(δ), we have µ(En(δ)) ≤ µ(Rn(δ)), so µ(En(δ))→ 0 as n→∞ as well.

General case: We start with a lemma.

Lemma: Let U be a measurable set and V any set such that U4V has

measure 0. Then V is also measurable and µ(U) = µ(V ).

Proof: Since V \U and U \V are both contained in U4V and µ(U4V ) =

0, we must have µ∗(V \ U) = µ∗(U \ V ) = 0, so by Observation 22.2(a)

from class V \ U and U \ V are both measurable (and have measure zero).

Then U ∪ V = U t (V \ U) is also measurable and µ(U ∩ V ) = µ(U) +

µ(V \ U) = µ(U) + 0 = µ(U). Since V = (U ∪ V ) \ (U \ V ), we deduce

that V is measurable; moreover, since U ∪ V = V t (U \ V ), we have

µ(V ) = µ(U ∪ V )− µ(U \ V ) = µ(U)− 0 = µ(U). �

We now go back to the problem. Let A = {x : fn(x) 6→ f(x)} (thus, by

assumption µ(A) = 0). Define the functions gn and g by setting gn(x) =

fn(x), g(x) = f(x) if x 6∈ A and gn(x) = g(x) = 0 if x ∈ A. Then by

construction gn → g everywhere.

We claim that each gn is measurable. Indeed, if for fixed n ∈ N and c ∈ R,

we set U = {x : fn(x) < c} and V = {x : gn(x) < c}, then U4V ⊆ A. Since

U is measurable (as fn is measurable), by the above Lemma, V is also

measurable, so gn is measurable.



7

Thus, we can apply the result in the special case to the functions {gn} and

g and deduce that the sets E′k(δ) = {x : |gk(x)− g(x)| ≥ δ} are measurable

and µ(E′k(δ))→ 0 as k →∞. Finally, it is clear that E′k(δ)4Ek(δ) ⊆ A, so

applying the above Lemma again, we deduce that Ek(δ) is measurable and

µ(Ek(δ)) = µ(E′k(δ)), so µ(Ek(δ))→ 0 as k →∞.

7. Kolmogorov-Fomin, Problem 8 after Section 28 (p.292). Note: The

functions f
(k)
i are only defined for 1 ≤ i ≤ k. It is probably useful to start

by drawing the graphs of the first few functions in the sequence (say for

k = 1, 2, 3).

Solution: Let g1, g2, . . . be the functions in the sequence (in the order in

which they appear in the sequence), that is, g1 = f
(1)
1 , g2 = f

(2)
1 , g3 = f

(2)
2 ,

g4 = f
(3)
1 , g5 = f

(3)
2 , g6 = f

(3)
3 , g7 = f

(4)
1 , . . . In particular, gn = f

(kn)
in

where

kn →∞ as n→∞.

Let 0 denote the identically zero function. By definition, the function f
(k)
i

differs from 0 on a set of measure 1
k , so µ{x : |gn(x)−0(x)| ≥ δ} ≤ 1

kn
for any

δ > 0. Since kn →∞ as n→∞, it follows that µ{x : |gn(x)−0(x)| ≥ δ} → 0

as n→∞, so gn → 0 in measure.

On the other hand, for any x ∈ (0, 1] and k ≥ 2, there exist indices i

and j such that f
(k)
i (x) = 0 and f

(k)
j (x) = 1. Thus, the sequence {gn(x)} =

{f (kn)in
(x)} contains infinitely many 0’s and infinitely many 1’s, so it cannot

be convergent.


