
Solutions to Homework #10

1. Let a < b be real numbers and let Peven[a, b] ⊆ C[a, b] be the set of

all even polynomials (that is, polynomials which only involve even powers

of x).

(a) Use Stone-Weierstrass Theorem to prove that Peven[a, b] is dense in

C[a, b] ⇐⇒ 0 6∈ (a, b).

(b)* (optional) Now prove the “⇐” direction in (a) using only Weierstrass

Approximation Theorem (but not Stone-Weierstrass Theorem).

Solution: (a) Let A = Peven[a, b]. Clearly, A is an algebra. Since 1 ∈
Peven[a, b], A vanishes nowhere on [a, b]. If 0 6∈ (a, b), then the function

f(x) = x2 (which lies in A) separates any two points on [a, b], so by the

Stone-Weierstrass Theorem, A is dense in C[a, b]. On the other hand, if

0 ∈ (a, b), there exists c 6= 0 such that [a, b] contains both c and −c. Since

p(c) = p(−c) for all p ∈ A, we conclude that A does not separate points and

hence cannot be dense.

(b) Following the hint, we consider the case 0 ≤ a < b. Take any g ∈
C[a, b]. Note that the function S : [a2, b2] → [a, b] given by S(x) =

√
x is

continuous, so the composite function h = f ◦ S : [a2, b2] → R (in other

words, h(x) = f(
√
x)) is also continuous. By Weierstrass Approximation

Theorem, for any ε > 0 there is a polynomial p such that |f(
√
t)− p(t)| < ε

for all t ∈ [a2, b2]. Setting x =
√
t, we get that |f(x) − p(x2)| < ε for all

x ∈ [a, b]. Since the function x 7→ p(x2) lies in Peven[a, b], it follows that

Peven[a, b] is dense in C[a, b].

2.

(a)* Prove that the (direct) analogue of Weierstrass Approximation The-

orem does not hold for C(R), continuous functions from R to R:

Show that there exists f ∈ C(R) which cannot be uniformly approx-

imated by polynomials, that is, there is no sequence of polynomials

{pn} s.t. pn⇒f on R.

(b)* Now prove that the following (weak) version of Weierstrass Approx-

imation Theorem holds for C(R): for any f ∈ C(R) there exists a

sequence of polynomials {pn} s.t. pn⇒f on [a, b] for any closed in-

terval [a, b] (of course, the point is that a single sequence will work

for all intervals).
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Solution: (a) Let f : R→ R by any continuous bounded nonconstant func-

tion (e.g. f(x) = 1
x2+1

). We claim that there is no sequence of polynomials

{pn} such that pn⇒f on R.

Suppose, on the contrary, that such a sequence {pn} exists. Then there

is N ∈ N such that |f(x) − pn(x)| < 1 for all n ≥ N and x ∈ R. Then

f(x) − 1 ≤ pn(x) ≤ f(x) + 1 for all n ≥ N , x ∈ R. Since f is bounded, it

follows that pn is bounded for all n ≥ N , hence (since pn is a polynomial),

pn is constant for all n ≥ N .

Thus, f is a limit of the sequence of constant functions pN , pN+1, . . . (since

removing finitely many terms from a sequence does not affect its limit). But

then it is clear that f itself is constant, contrary to our assumption.

(b) The solution below does not really follow the given hint.

Since any closed interval [a, b] is contained in [−k, k] for some k ∈ N
and uniform convergence on a set implies uniform convergence on any of its

subsets, it suffices to find a sequence of polynomials pn such that pn⇒f on

[−k, k] for each k.

For each k ∈ N we shall apply the Weierstrass Approximation Theorem

on the interval [−k, k] in the form “for every ε > 0 . . . ” with ε = 1
k . We

conclude that there is a polynomial pk such that dunif,k(pk, f) < 1
k where

dunif,k is the uniform metric on C[−k, k]; in other words, |f(x)− pk(x)| < 1
k

for all x ∈ [−k, k].

Now fix k ∈ N and take any n ≥ k. Then [−k, k] ⊆ [−n, n], so for any

x ∈ [−k, k] we have |pn(x)−f(x)| < 1
n → 0 uniformly in x. Therefore, pn⇒f

on [−k, k].

3. Let A1, A2, B1 and B2 be subsets of the same set. Prove that

(a) (A1 ∪A2)4(B1 ∪B2) ⊆ (A14B1) ∪ (A24B2)

(b) (A1 ∩A2)4(B1 ∩B2) ⊆ (A14B1) ∪ (A24B2)

Solution: (a) Let X = A1∪A2∪B1∪B2. Since U4V = (U ∪V )\ (U ∩V ),

we have

(A1∪A2)4(B1∪B2) = X\((A1∪A2)∩(B1∪B2)) ⊆ X\((A1∩B1)∪(A2∩B2))

⊆ ((A1∪B1)\ (A1∩B1))∪ ((A2∪B2)\ (A2∩B2)) = (A14B1)∪ (A24B2)

(b) Let X be as in (a), and let Y c = X \ Y for every subset Y of X. For

any Y,Z we have

(Y c4Zc) = (Y c ∩ (Zc)c) ∪ ((Y c)c ∩ Zc) = (Y c ∩ Z) ∪ (Y ∩ Zc) = Y4Z.
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Hence (A1∩A2)4(B1∩B2) = (A1∩A2)
c4(B1∩B2)

c = (Ac
1∪Ac

2)4(Bc
1∪Bc

2).

By (a), (Ac
1 ∪ Ac

2)4(Bc
1 ∪ Bc

2) ⊆ (Ac
14Bc

1) ∪ (Ac
24B2)

c = (A14B1) ∪
(A24B2). Combining the two inclusions, we obtain the assertion of (b).

4. In all parts of this problem X = R or R2, and m denotes the Lebesgue

measure on X.

(a)* Prove that every open subset of X is measurable. Deduce that every

closed subset of X is measurable.

Now let Ω0,Ω1,Ω2, . . . be the following collections of subsets of X. First

define Ω0 to be the set of all subsets of X which are either open or closed.

For each k ≥ 1 define Ωk to be the set of all subsets which can be represented

either as a countable union or a countable intersection of subsets from Ωk−1.

(b) Deduce from (a) that each set in each Ωk is measurable

(c) Assume that X = R and S = Q. Does there exist k ∈ N such that

S ∈ Ωk? If yes, what is the smallest such k?

(d) Same question as (c) for S = R \Q

Solution: (a) We will give a proof in R2. The case of R is similar (and

slightly easier). So let A ⊆ R2 be an open subset. We claim that A is

a countable union of rectangles (one can require that those rectangles are

squares, but this is not necessary for this problem). Since rectangles are

elementary (hence measurable) and countable unions of measurable sets are

measurable (KF, Theorem 9 on p.264), this would imply that A is measur-

able.

Take any point P ∈ A. Since A is open, there exists ε = ε(P ) > 0

such that Nε(P ), the open disk of radius ε centered at P (in the Euclidean

metric), is contained in A. Let δ = ε√
2
. Clearly, if P = (a, b), then the open

square (a − δ, a + δ) × (b − δ, b + δ) is contained in Nε(P ) and hence also

in A. Since Q is dense in R, we can find rational numbers q1, q2, q3, q4 such

that a − δ < q1 < a < q2 < a + δ and b − δ < q3 < b < q4 < b + δ, and let

RP be the open rectangle (q1, q2)× (q3, q4).

We claim that A = ∪P∈ARP . Indeed, by construction each RP is con-

tained in A, so ∪P∈ARP ⊆ A. On the other hand, since P ∈ RP , we have

∪P∈ARP ⊇ A. Note that each RP has rational coordinates (of its vertices),

and clearly there are countably many of rectangles with rational coordinates

(there is a natural bijection between the set of such rectangles and a subset

of Q4 = Q×Q×Q×Q and Q×Q×Q×Q is countable being a Cartesian

product of finitely many countable sets).
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Thus, the collection {RP : P ∈ A} contains only countably many distinct

subsets, so A is a countable union of open rectangles.

We showed that every open subset of R2 is measurable. Since comple-

ments of measurable sets are measurable and since any closed set is the

complement of an open set, we deduce that every closed set is measurable

as well.

(b) This follows immediately from (the 2-dimensional version of) Theo-

rem 23.1.

(c) The answer is yes, and the minimal k is 1. Indeed, since Q is neither

open nor closed, it does not lie in Ω0. On the other hand, Q is countable,

so it can be written as a countable union of points. Since points are closed,

we deduce that Q ∈ Ω1.

(d) The answer is the same as in (c). For the same reason as in (c),

R\Q 6∈ Ω0. Now let q1, q2, . . . be any enumeration of Q, and let Ai = R\{qi}.
Then each Ai is open and R \Q =

∞⋂
i=1

Ai, so R \Q ∈ Ω1.

Remark: In fact, it is not hard to see that each Ωk is closed under taking

complements. This is clear for k = 0, and for k > 0 this can be proved by

induction using de Morgan’s laws. Once we know that Ω1 is closed under

complements, it follows immediately that the answers to (c) and (d) must

be the same.

5.

(a) Let A be a countable subset of R. Prove that A has measure zero

(that is, A is measurable and m(A) = 0).

(b) Prove that the (standard) Cantor set C has measure 0 (see p.105 in

Pugh for the definition of the standard Cantor set).

Solution: (a) First note that any point (that is, one element set) has mea-

sure zero since we can think of {a} as a closed interval [a, a]. If A is count-

able, it is a countable disjoint union of its points (A = ta∈A{a}), so by count-

able additivity of m (Theorem 23.1(d)) we have m(A) =
∑
a∈A

m({a}) = 0.

(b) We present two solutions.

For the first solution, observe that proving that C has measure 0 is equiv-

alent to proving that its complement [0, 1]\C is measurable and has measure

1. Since by construction, [0, 1] \ C is a (countable) disjoint union of inter-

vals, it is measurable, and its measure is equal to the sum of lengths of those
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intervals (again by Theorem 23.1). By construction, [0, 1] \ C is a disjoint

union of 1 interval of length 1
3 , 2 intervals of length 2

9 , 4 intervals of length
4
27 etc. (for each n ∈ Z≥0 we have 2n intervals of length 1

3n+1 ). Therefore,

m([0, 1] \ C) =

∞∑
n=0

2n

3n+1
=

1

3
·
∞∑
n=0

(
2

3

)n

=
1

3
· 1

1− 2/3
= 1.

For the second solution, define the sets C0 = [0, 1] ⊃ C1 ⊃ C2 ⊃ . . .

as on page 41 of Rudin (so that C = ∩Cn). By construction, each Cn is

a finite union of intervals of the same length, and Cn+1 is obtained from

Cn by removing the middle third of each interval of Cn. Thus, each Cn is

measurable and m(Cn+1) = 2
3m(Cn). Since m(C0) = 1, we conclude that

m(Cn) = (23)n.

Since C ⊂ Cn for each n, we have m∗(C) ≤ m∗(Cn) = m(Cn) = (23)n for

each n. Since (23)n → 0 as n→∞, we conclude that m∗(C) = 0. Hence by

Observation 22.2(a), C is measurable and m(C) = 0.

6.

(a) Let A,B and C be subsets of the same set. Prove that

A4C ⊆ (A4B) ∪ (B4C)

(b) Now let X = [0, 1] or [0, 1]2. Let A be a subset of X, and suppose

that for every ε > 0 there exists a measurable subset B ⊆ X such

that m∗(A4B) < ε. Prove that A is measurable.

Solution: (a) Let x ∈ A4C. Then (x ∈ A and x 6∈ C) or (x ∈ C and

x 6∈ A). WOLOG assume we are in the first case: x ∈ A and x 6∈ C. If

x ∈ B, then x ∈ B4C, and if x 6∈ B, then x ∈ A4B. In either case, we

have x ∈ (A4B) ∪ (B4C).

(b) Take any ε > 0. By assumption there exists a measurable set B ⊆ X
such that m∗(A4B) < ε

2 . Since B is measurable, there exists an elementary

set C such that m∗(B4C) < ε
2 .

By Lemma 21.1(c), for any two sets U and V we have m∗(U ∪ V ) ≤
m∗(U)+m∗(V ). Using this inequality and (a), we getm∗(A4C) ≤ m∗(A4B)+

m∗(B4C) < 2 · ε2 = ε. Since ε > 0 was arbitrary, A is measurable by defi-

nition.

7. Problem 7 from Kolmogorov-Fomin (p. 268). Note that the hint given

in KF is essentially a sketch of the solutions. The things you need to justify

are
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(a) C = ∪∞n=−∞Φn

(b) Φn ∩ Φm = ∅ if n 6= m

(c) Assume that Φ0 is measurable. Then each Φn is measurable and

µ(Φn) = µ(Φ0) for all n ∈ Z
(d) the conclusion of (c) contradicts (33) in KF.

Remark: The Lebesgue measure on the circle C can be defined in exactly

the same way as on R with the exception that we call a subset of C elemen-

tary if it is a finite union of arcs.

Solution: We start by introducing some additional notations and slightly

rephrasing the definition of the sets Φn.

Let R : C → C be the counterclockwise rotation by the angle πα (where

α is a fixed irrational number). Define the relation ∼ on C by x ∼ y ⇐⇒
there exists n ∈ Z such that y = Rn(x) (where Rn = R applied n times =

counterclockwise rotation by nπα). It is straightforward to check that ∼ is

an equivalence relation and that every equivalence class with respect to ∼
is countably infinite (the latter holds since α is irrational; if α was rational,

equivalence classes would be finite).

Now let Φ0 be any subset of C which contains precisely one element from

each equivalence class, and for each n ∈ Z define Φn = RnΦ0 = {Rn(x) :

x ∈ Φ0}. We now proceed with verifying properties (a)-(d) above.

(a) By construction each Φn lies in C, so ∪∞n=−∞Φn ⊆ C. To prove the

reverse inclusion, take any x ∈ C. By definition of Φ0 there exists y ∈ Φ0

such that y ∼ x, so x = Rn(y) for some n ∈ Z. But then x ∈ RnΦ0 = Φn as

desired.

(b) Suppose, by way of contradiction, that there exists some x ∈ C which

lies in Φn ∩ Φm for some n 6= m. Then there exist y, z ∈ Φ0 such that

x = Rn(y) = Rm(z). Hence y = Rn−m(z), so y ∼ z. Since both y and z lie

in Φ0 and since Φ0 contains only one element from each equivalence class,

we must have y = z. Hence y = Rn−m(y), which means that Rn−m must

be the trivial rotation. Since Rn−m is the rotation by the angle πα(n−m),

it follows that α(n − m) ∈ Z, which contradicts the assumption that α is

irrational.

Next we prove a general lemma:

Lemma: Let f : C → C be a rotation and A any subset of C. Then

(i) µ∗(f(A)) = µ∗(A)
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(ii) If A is measurable, then f(A) is also measurable and therefore µ(f(A)) =

µ(A) by (a)

Proof of Lemma: (i) By definition,

µ∗(A) = inf

{ ∞∑
n=1

length(In) where {In}∞n=1 is a countable cover of A by open arcs

}
.

Note that if {In}∞n=1 is any such cover of A, then {f(In)}∞n=1 is a countable

cover of f(A) by open arcs. Moreover length(f(In)) = length(In) since f is

a rotation, so
∑∞

n=1 length(f(In)) =
∑∞

n=1 length(In), and it follows that

µ∗(f(A)) ≤ µ∗(A).

Since the last inequality holds for any subset A and any rotation f and

since f−1 is also a rotation, it remains true if we replace A by f(A) and f by

f−1. This way we get µ∗(f−1(f(A))) ≤ µ∗(f(A)), that is, µ∗(A) ≤ µ∗(f(A)).

Thus, µ∗(f(A)) ≤ µ∗(A) and µ∗(A) ≤ µ∗(f(A)), so µ∗(A) = µ∗(f(A)).

(ii) Let ε > 0. Since A is measurable, there exists an elementary set B

such that µ∗(A4B) < ε. By (i) we have µ∗(f(A4B)) < ε. Since f is a

bijection, it is clear that f(A4B) = f(A)4f(B), so µ∗(f(A)4f(B)) < ε.

Finally note that since B is a finite disjoint union of arcs, f(B) is also a

finite disjoint union of arcs, so f(B) is elementary and hence the previous

inequality implies that f(A) is measurable. �

(c) and (d) Assume that Φ0 is measurable. Then by the Lemma each Φn

is measurable and µ(Φn) = µ(Φ0) for all n.

Since C = tn∈ZΦn, by countable additivity of µ we have

1 = µ(C) =

n=∞∑
n=−∞

µ(Φn) =

n=∞∑
n=−∞

µ(Φ0).

This is impossible since if µ(Φ0) = 0, then
n=∞∑
n=−∞

µ(Φ0) = 0 and if µ(Φ0) > 0,

then
n=∞∑
n=−∞

µ(Φ0) diverges.

8. Problem 1(a)(b)(d) on page 450 in Pugh.

Solution: To be posted later.


