
Homework #7. Due Monday, October 29th, by 1pm (in my mailbox)

Reading:

1. For this homework assignment. Completions of metric spaces (2.10 in

Pugh, class lecture 13). Uniform convergence (4.1 in Pugh, up to p.214

including the Example on p.214, 7.1-7.3 in Rudin, class lecture 14).

2. For next week’s classes: More on uniform convergence (the rest of 4.1 in

Pugh, 7.3-7.5 in Rudin). Construction of a continuous nowhere differentiable

function (4.7 in Pugh and Theorem 7.18 on p.154 in Rudin).

Problems:

Note on hints: All hints are given at the end of the assignment, each on

a separate page. Problems (or parts of problems) for which hint is available

are marked with *.

1. Let X be a metric space and Y a subset of X.

(a) Prove that if X is complete and Y is closed in X, then Y is complete.

(b) Prove that if Y is complete, then Y is closed in X.

Recall that we proved the analogous statements with ‘complete’ replaced by

‘sequentially compact’ (Theorem 9.2 and Theorem 8.1, respectively).

2. This problem describes a fancy way to show that closed bounded intervals

in R are connected. A metric space (X, d) is called chain-connected if for

any x, y ∈ X and δ > 0 there exists a finite sequence x0, x1, . . . , xn of points

of X such that x0 = x, xn = y and d(xi, xi+1) < δ for all i.

(a)* Let X be metric space which is compact and chain-connected. Prove

that X is connected.

(b) Prove that a closed bounded interval [a, b] ⊆ R is chain-connected

and deduce from (a) that [a, b] is connected.

3*. Let f : R→ R be a differentiable function.

(a) Assume that f ′ is bounded, that is, there exists M ∈ R such that

|f ′(x)| ≤M for all x ∈ R. Prove that f is uniformly continuous.

(b) Now assume that f ′(x) → ∞ as x → ∞. Prove that f is not

uniformly continuous.

4. The goal of this problem is to fill in the details of the construction of

the completion of a metric space discussed in Lecture 13. Part (a) below is

Claim 1 from class; (b) and (c) form Claim 2 from class, and (d) is Claim 3

from class.
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We start by recalling the notations introduced in class. Let (X, d) be a

metric space. Let Ω = Ω(X) be the set of all Cauchy sequences {xn}n∈N
with xn ∈ X for each n. Define the relation ∼ on Ω by setting

{xn} ∼ {yn} ⇐⇒ lim
n→∞

d(xn, yn) = 0.

(a) Prove that ∼ is an equivalence relation.

Now let X̂ = Ω/ ∼, the set of equivalence classes with respect to ∼. The

equivalence class of a sequence {xn} will be denoted by [xn]. For instance,

[ 1n ] = [ 1
n2 ] since the sequences xn = 1

n and yn = 1
n2 are equivalent. Given

an element x ∈ X, we will denote by [x] ∈ X̂ the equivalence class of the

constant sequence all of whose elements are equal to x.

Now define the function D : X̂ × X̂ → R≥0 by setting

D([xn], [yn]) = lim
n→∞

d(xn, yn) (∗ ∗ ∗)

(b)* Prove that the limit on the right-hand side of (***) always exists

and that the function D is well-defined (that is, if [xn] = [x′n] and

[yn] = [y′n], then limn→∞ d(xn, yn) = limn→∞ d(x′n, y
′
n)).

(c) Prove that (X̂,D) is a metric space

(d) Consider the map ι : X → X̂ given by ι(x) = [x] (that is, ι sends each

x to the equivalence class of the corresponding constant sequence).

Prove that ι is injective and D(ι(x), ι(y)) = d(x, y) for all x, y ∈ X.

This implies that (X, d) is isometric to the metric space (ι(X), D) (so

identifying X with ι(X), we can think of X as a subset of (X̂,D)).

5. Consider functions fn : R≥0 → R given by fn(x) = 1
nx+1 . Let 0 ≤ a ≤ b

be real numbers. Prove that {fn} converges uniformly on [a, b] ⇐⇒ a > 0

or a = b = 0.

6. Let X be a set, (Y, d) a metric space. Let {fn : X → Y } be a sequence

of functions, and let f : X → Y be a function.

(i) Define what it should mean for {fn} to converge to f uniformly and

what it should mean for {fn} to be uniformly Cauchy (in class we

gave both definitions in the case Y = R, but there is a natural way

to extend them to arbitrary Y ).

(ii) Theorem 14.2 from class asserts that in the case Y = R, a sequence

{fn} is uniformly convergent if and only if it is uniformly Cauchy.

Find a natural necessary and sufficient condition on Y under which

this equivalence remain true (the answer will not depend on X as

long as X 6= ∅). You do not need to write down the full proof – just

state the condition and where it arises in the proof.
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Hint for 2(a): Assume that X is disconnected, and use Problem 2 from

HW#6 and uniform continuity to reach a contradiction.
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Hint for 3: Use the mean-value theorem.
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Hint for #4(b): For the existence of the limit prove that the sequence

{d(xn, yn)} is Cauchy using the inequality d(x,w) ≤ d(x, y) + d(y, z) +

d(z, w).


