Homework #6. Due Thursday, October 18th, in class Reading:

1. For this homework assignment. In Pugh: 2.5; in Rudin: 2.5 and 4.4; class notes (Lecture 12).

2. For next week's classes: Continuity and connectedness (2.5 in Pugh and 4.4 in Rudin). Completions of metric spaces (2.10 in Pugh). We will also start talking about uniform convergence (4.1 in Pugh and 7.1-7.3 in Rudin).

Problems:

Note on hints: All hints are given at the end of the assignment, each on a separate page. Problems (or parts of problems) for which hint is available are marked with *.

1. Complete the proof of the backwards direction of Theorem 12.2 from class (which asserts the any interval in $\mathbb R$ is connected). Recall that we

- (i) proved the result for closed bounded intervals (intervals of the form $[a, b]$ and
- (ii) explained how to prove the result for intervals of the form $[a, b)$ using (i) and Lemma 12.5 (=Problem 4 in this assignment).

Prove the backwards direction of Theorem 12.2 in the remaining cases.

 2^* . Let X be a metric space. Prove that X is disconnected if and only if there exists a continuous function $f : X \to \mathbb{R}$ such that $f(X) = \{1, -1\}.$

3.

- (a^{*}) Let X be a disconnected metric space, so that $X = A \sqcup B$ for some non-empty closed subsets A and B . Prove that if C is any connected subset of X, then $C \subseteq A$ or $C \subseteq B$.
- (b^{*}) A metric space X is called *path-connected* if for any $x, y \in X$ there exists a continuous function $f : [0,1] \to X$ such that $f(0) = x$ and $f(1) = y$ (informally, this means that any two points in X can be joined by a path in X). Prove that any path-connected metric space is connected.

4^{*}. Let X be a metric space, $\{X_{\alpha}\}_{{\alpha}\in I}$ a collection (not necessarily finite) of subsets of X such that $\cap_{\alpha \in I} X_\alpha$ is non-empty and $\cup_{\alpha \in I} X_\alpha = X$. Prove that if each X_{α} is connected, then X is connected.

5. (practice) Metric spaces (X, d_X) and (Y, d_X) are called **isometric** if there exists a bijection $f: X \to Y$ such that $d_Y(f(a), f(b)) = d_X(a, b)$ for

all $a, b \in X$. Prove that all abstract properties of metric spaces introduced in this class are preserved under isometries, that is, if (X, d_X) and (Y, d_Y) are isometric and X is compact, then Y is compact; if X is connected, then Y is connected etc.

6. Let (X, d_X) and (Y, d_Y) be metric spaces, and consider the product space $X \times Y$ with metric d given by $d((x_1,y_1),(x_2,y_2)) = d_X(x_1,x_2) +$ $d_Y(y_1, y_2)$

- (a) Prove that $(X \times Y, d)$ is indeed a metric space
- (b) Prove that for every $x \in X$, the subset $\{x\} \times Y = \{(x, y) : y \in Y\}$ of $X \times Y$ is isometric to Y. Likewise for every $y \in Y$, the subset $X \times \{y\} = \{(x, y) : x \in X\}$ is isometric to X.
- (c^*) Prove that if X and Y are both connected, then $X \times Y$ connected.

7. The goal of this problem is to prove that any open subset of $\mathbb R$ (with standard metric) is a **disjoint** union of at most countably many open intervals.

So, let U be any open subset of \mathbb{R} .

- (a) Define the relation \sim on U by setting $x \sim y \iff x = y$ or $(x \le y)$ and $[x, y] \subset U$) or $(y < x$ and $[y, x] \subset U$). Prove that \sim is an equivalence relation.
- (b^*) Let A be an equivalence class with respect to ∼. Show that A is an open interval.
- (c^*) Deduce from (b) that U is a disjoint union of open intervals. Then prove that the number of those intervals is at most countable.

8. Use Problem 6 to show that the analogue of Problem 7 does not hold in \mathbb{R}^2 , that is, there exist open subsets of \mathbb{R}^2 which are not representable as disjoint unions of open discs (an open disc is an open ball in \mathbb{R}^2).

Hint for 2: The " \Leftarrow " direction is easy. For the " \Rightarrow " direction, assume that $X = A \sqcup B$ with A, B closed, and show that the function $f: X \to \mathbb{R}$ given by

$$
f(x) = \begin{cases} 1 & \text{if } x \in A \\ -1 & \text{if } x \in B \end{cases}
$$

is continuous.

Hint for $3(a)$: Use the inheritance principle.

Hint for 3(b): Use (a) and Theorem 12.1 from class $($ =Theorem 4.22 from Rudin).

Hint for 4: Assume that X is disconnected and use $3(a)$ to reach a contradiction.

Hint for 6(b): By 5 and 6(a) all subsets of the form $X \times \{y\}$ and $\{x\} \times Y$ are connected. Start with this fact and use Problem 4 twice. Drawing a picture in the case $X=Y=[0,1]$ will likely be helpful.

Hint for 7(b): First use an earlier homework problem to prove that A is connected. Then use Theorem 12.2 from class.

Hint for 7(c): Use the fact that $\mathbb Q$ is countable.