Homework #4. Due Thursday, September 27th, in class Reading:

1. For this homework assignment: In Pugh: 2.2, 2.3, the beginning of 2.4 and 2.7; in Rudin: 2.3 and 4.2.

2. For next week's classes: We will continue talking about compactness and its relation with completeness and continuity. The relevant sections are still 2.4 and 2.7 in Pugh and 2.3 in Rudin. I may send more detailed suggestions over the weekend.

Problems:

Note on hints: All hints are given at the end of the assignment, each on a separate page. Problems (or parts of problems) for which a hint is available are marked with *.

1. Let $f : A \rightarrow B$ be a function. Give a detailed proof of the following properties:

- (a) $f^{-1}(U \cap V) = f^{-1}(U) \cap f^{-1}(V)$ for all $U, V \subseteq B$
- (b) $f(f^{-1}(D)) \subseteq D$ for all $D \subseteq B$. Give an example showing that the inclusion may be strict.
- (c) $f^{-1}(f(C))$ ⊇ C for all $C \subseteq A$. Give an example showing that the inclusion may be strict.

2. Let $\{x_n\}$ be a sequence in a metric space (X, d) , and let x be some element of X. Prove that the following conditions are equivalent:

- (i) some subsequence of $\{x_n\}$ converges to x
- (ii) for every $\varepsilon > 0$ there are infinitely many n for which $x_n \in N_{\varepsilon}(x)$.

When proving the implication (ii)⇒(i) make it clear how you use that $x_n \in$ $N_{\varepsilon}(x)$ for infinitely many n (and not just for some n).

3. Let $K = \{\frac{1}{n}\}$ $\frac{1}{n}$: $n \in \mathbb{N}$ \cup {0}. Prove that K is covering compact in two different ways:

(i) by showing that K is closed and bounded as a subset of $\mathbb R$ (We will prove in class next week that a subset of $\mathbb R$ is covering compact if and only if it is closed and bounded).

 $(ii)*$ directly from definition of covering compactness.

4^{*}. Let X be a metric space. Prove that X is covering compact \iff X satisfies the following property:

Let ${K_\alpha}$ be any collection of closed subsets of X such that for any finite subcollection $K_{\alpha_1}, \ldots, K_{\alpha_n}$, the intersection $K_{\alpha_1} \cap \ldots \cap K_{\alpha_n}$ is non-empty. Then the intersection of all sets in $\{K_{\alpha}\}\$ is non-empty.

5^{*}. Let $X = C[a, b]$, considered as a metric space with uniform metric d_{unif} (as defined in Problem 4 in HW#2). Prove that the set $B_1(0)$, the closed ball of radius 1 centered at $\mathbf{0}$ in X, is not sequentially compact. Here $\mathbf{0}$ is the function which is identically 0.

Recall that the notion of an ultrametric metric space was introduced in HW#3.7. The following problem gives an interesting example of an ultrametric metric space.

6. Let p be a fixed prime number. Define the function $|\cdot|_p : \mathbb{Q} \to \mathbb{R}_{\geq 0}$ as follows: given a nonzero $x \in \mathbb{Q}$, we can write $x = p^a \frac{c}{d}$ $\frac{c}{d}$ for some $a, c, d \in \mathbb{Z}$ where c and d are not divisible by p. Define $|x|_p = p^{-a}$ (note that the above representation is not unique, but it is easy to see that a is uniquely determined by x). For instance,

$$
\left|\frac{9}{20}\right|_p = \begin{cases} \frac{1}{9} & \text{if } p = 3\\ 4 & \text{if } p = 2\\ 5 & \text{if } p = 5\\ 1 & \text{for any other } p. \end{cases}
$$

Also define $|0|_p = 0$. Now define the function $d_p : \mathbb{Q} \times \mathbb{Q} \to \mathbb{R}_{\geq 0}$ by $d_p(x, y) =$ $|y-x|_p.$

- (a) Prove that (\mathbb{Q}, d_p) is an ultrametric space. (Note: the completion of this metric space is usually denoted by \mathbb{Q}_p is called p-adic numbers).
- (b) Describe explicitly the set $N_1(0)$ (the open ball of radius 1 centered at 0) in (\mathbb{Q}, d_p) .
- (c) Let d be the standard metric on $\mathbb Q$ (that is, $d(x, y) = |y x|$ where $|\cdot|$ is the usual absolute value). Give examples of sequences $\{x_n\}$ and ${y_n}$ in Q such that
	- (i) $x_n \to 0$ in (\mathbb{Q}, d_p) but $\{x_n\}$ is unbounded as a sequence in (\mathbb{Q}, d)

(ii) $y_n \to 0$ in (\mathbb{Q}, d) but $\{y_n\}$ is unbounded as a sequence in (\mathbb{Q}, d_p)

7. Let X be an arbitrary metric space and $f : X \to \mathbb{R}$ a continuous function (where R is equipped with standard metric).

- (i) Prove that the sets $\{x \in X : f(x) > 0\}$ and $\{x \in X : f(x) < 0\}$ are open and the set $\{x \in X : f(x) = 0\}$ is closed
- (ii) Prove that if $g: X \to \mathbb{R}$ is another continuous function, then the set ${x \in X : f(x) = g(x)}$ is closed

Hint for #3(ii): Let $\{U_{\alpha}\}\$ be any open cover of K. One of the U_{α} must contain 0. What can you say about that $U_\alpha ?$

Hint for $#4$ **:** There is a natural bijection between open covers of X and collections of closed subsets with empty intersection (here we consider open covers in the special case $S = X$).

 $\ensuremath{\textnormal{\textbf{Hint}}}$ for #5: Use a result from one of the previous homeworks.