
Homework #3. Due Thursday, September 20th, in class

Reading:

1. For this homework assignment: In Pugh: 2.1, 2.2 and parts of 2.3; in

Rudin: 2.2 and 4.2 (pp. 85-89)

2. For next week’s classes: We will continue talking about continuity. One

thing we will definitely discuss is topological description of continuity (see

pp. 71-73 in Pugh or Theorem 4.8 in Rudin). Then we will move on to

compactness (2.4 and 2.7 in Pugh and 2.2 in Rudin). There are two equivalent

definitions of compactness for metric spaces – “covering compactness” in the

terminology of Pugh (this is also the right definition for the more general class

of topological spaces and usually called just compactness) and sequential

compactness (which in general is weaker than covering compactness, but is

equivailent in the case of metric spaces). Rudin introduces compactness as

covering compactness and barely mentions sequential compactness. Pugh

starts with sequential compactness and uses it proves to prove all the main

compactness results in 2.4. He introduces covering compactness much later,

in 2.7. I plan to start with sequential compactness because it is easier to

comprehend, but I will also introduce covering compactness before finishing

2.4.

Problems:

Note on hints: All hints are given at the end of the assignment, each on

a separate page. Problems (or parts of problems) for which hint is available

are marked with *.

1. Given a metric space (X, d), a point x ∈ X and ε > 0, define Bε(x) =

{y ∈ X : d(y, x) ≤ ε}, called the closed ball of radius ε centered at x.

(a) Prove that Bε(x) is always a closed subset of X.

(b) Deduce from (a) that Nε(x) ⊆ Bε(x), that is, the closure of the open

ball of radius ε centered at x is contained in the respective closed ball.

(c) Is it always true that Nε(x) = Bε(x)? Prove or give a counterexample.

2*. Let X be metric space, and let Z ⊆ Y be subsets of X. Prove that

Z is closed as a subset of Y ⇐⇒ Z = Y ∩ K for some closed subset K
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of X. Deduce that if Z is closed in X, then Z is closed in Y . Note: The

analogous result with closed sets replaced by open sets was proved in class

(Theorem 5.2) and also appears as Theorem 13 on page 74 in Pugh or as

Theorem 2.30 in Rudin.

3. Let (X, d) be a metric space and S a subset of X. Prove that the following

three conditions are equivalent. The set S is called bounded if it satisfies either

of those conditions:

(i) There exists x ∈ X and R ∈ R such that S ⊆ NR(x).

(ii) For any x ∈ X there exists R ∈ R such that S ⊆ NR(x).

(iii) The set {d(s, t) : s, t ∈ S} is bounded above as a subset of R.

Definition: Let (X, d) be a metric space and ε > 0. A subset S of X is

called an ε-net if for any x ∈ X there exists s ∈ S such that d(x, s) < ε. In

other words, S is an ε-net if X is the union of open balls of radius ε centered

at elements of S.

4*. Let S be a subset of a metric space (X, d). Prove that the following are

equivalent:

(i) The closure of S is the entire X;

(ii) U ∩ S 6= ∅ for any non-empty open subset U of X;

(iii) S is an ε-net for every ε > 0.

The subset S is called dense (in X) if it satisfies these equivalent conditions.

5. Let X be any set with discrete metric (d(x, y) = 1 if x 6= y and d(x, y) = 0

if x = y), and let Y be an arbitrary metric space.

(a) Let {xn} be a sequence in X. Prove that {xn} converges if and only if

it is eventually constant, that is, there exists M ∈ N and x ∈ X such

that xn = x for all n ≥M .

(b) Prove that any function f : X → Y is continuous in two different

ways: first using sequential definition of continuity and then using the

ε-δ definition.

6.
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(a) Let (X, dX) and (Y, dY ) be metric spaces, and let f : X → Y be a

function such that

dY (f(u), f(v)) ≤ dX(u, v) for all u, v ∈ X.

Prove that f is continuous.

(b) Let (X, d) be a metric space, and fix a ∈ X. Use (a) to prove that the

function f : X → R (where R is equipped with the usual metric) given

by f(x) = d(a, x) is continuous. Warning: be careful with absolute

values.

7. A metric space (X, d) is called ultrametric if for any x, y, z ∈ X the

following inequality holds:

d(x, z) ≤ max{d(x, y), d(y, z)}.

(Note that this inequality is much stronger than the triangle inequality). If X

is any set and d is the discrete metric on X, then clearly (X, d) is ultrametric.

A more interesting example of an ultrametric space will be given in the next

homework.

Prove that properties (i) and (ii) below hold in any ultrametric space (X, d)

(note that both properties are counter-intuitive since they are very far from

being true in R).

(i) Take any x ∈ X, ε > 0 and take any y ∈ Nε(x). Then Nε(y) = Nε(x).

This means that if we take an open ball of fixed radius around some

point x, then for any other point y from that open ball, the open ball

of the same radius, but now centered at y, coincides with the original

ball. In other words, any point of an open ball happens to be its center.

(ii) Prove that a sequence {xn} in X is Cauchy ⇐⇒ for any ε > 0

there exists M ∈ N such that d(xn+1, xn) < ε for all n ≥ M . Note:

The forward implication holds in any metric space. The definition of

a Cauchy sequence is given on page 77 in Pugh. We will talk about

Cauchy sequences later in class, but to solve this problem you do not

need to know anything about them except the definition.
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Hint for #2: Do not try to imitate the proof for the open set case (this is

not impossible, but definitely not very natural). Instead use the inheritance

property for open sets to prove the corresponding result for closed sets.
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Hint for #4: Prove that negations of (i), (ii) and (iii) are equivalent to

each other
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