Homework #10. Due Thursday, November 29th, in class Reading:

1. For this homework assignment: Stone-Weierstrass Theorem (4.4 in Pugh and 7.7 in Rudin, class notes from Lectures 19-20), Lebesgue measure on \mathbb{R} and \mathbb{R}^2 (Section 25 in Kolmogorov-Fomin, 6.1 and 6.2 in Pugh and class notes from Lectures 21-23). Note that in class we defined measurable sets as in KF; Pugh's definition is quite different (albeit equivalent)

2. For next week's classes: TBA

Problems:

1. Let a < b be real numbers and let $\mathcal{P}_{even}[a, b] \subseteq C[a, b]$ be the set of all even polynomials (that is, polynomials which only involve even powers of x).

- (a) Use Stone-Weierstrass Theorem to prove that $\mathcal{P}_{even}[a, b]$ is dense in $C[a, b] \iff 0 \notin (a, b).$
- (b)^{*} (optional) Now prove the "⇐" direction in (a) using only Weierstrass Approximation Theorem (but not Stone-Weierstrass Theorem).
- 2.
- (a)* Prove that the (direct) analogue of Weierstrass Approximation Theorem does not hold for $C(\mathbb{R})$, continuous functions from \mathbb{R} to \mathbb{R} : Show that there exists $f \in C(\mathbb{R})$ which cannot be uniformly approximated by polynomials, that is, there is no sequence of polynomials $\{p_n\}$ s.t. $p_n \rightrightarrows f$ on \mathbb{R} .
- (b)* Now prove that the following (weak) version of Weierstrass Approximation Theorem holds for $C(\mathbb{R})$: for any $f \in C(\mathbb{R})$ there exists a sequence of polynomials $\{p_n\}$ s.t. $p_n \rightrightarrows f$ on [a, b] for any closed interval [a, b] (of course, the point is that a single sequence will work for all intervals).
- **3.** (practice) Let A_1, A_2, B_1 and B_2 be subsets of the same set. Prove that
 - (a) $(A_1 \cup A_2) \triangle (B_1 \cup B_2) \subseteq (A_1 \triangle B_1) \cup (A_2 \triangle B_2)$
 - (b) $(A_1 \cap A_2) \triangle (B_1 \cap B_2) \subseteq (A_1 \triangle B_1) \cup (A_2 \triangle B_2)$

Recall that both formulas were used in verification of properties of Lebesgue measure.

4. In all parts of this problem $X = \mathbb{R}$ or \mathbb{R}^2 , and *m* denotes the Lebesgue measure on *X*.

(a)* Prove that every open subset of X is measurable. Deduce that every closed subset of X is measurable.

Now let $\Omega_0, \Omega_1, \Omega_2, \ldots$ be the following collections of subsets of X. First define Ω_0 to be the set of all subsets of X which are either open or closed. For each $k \geq 1$ define Ω_k to be the set of all subsets which can be represented either as a countable union or a countable intersection of subsets from Ω_{k-1} .

- (b) Deduce from (a) that each set in each Ω_k is measurable
- (c) Assume that $X = \mathbb{R}$ and $S = \mathbb{Q}$. Does there exist $k \in \mathbb{N}$ such that $S \in \Omega_k$? If yes, what is the smallest such k?
- (d) Same question as (c) for $S = \mathbb{R} \setminus \mathbb{Q}$
- 5.
- (a) Let A be a countable subset of \mathbb{R} . Prove that A has measure zero (that is, A is measurable and m(A) = 0).
- (b) Prove that the (standard) Cantor set C has measure 0 (see p.105 in Pugh for the definition of the standard Cantor set).
- 6.
- (a) Let A, B and C be subsets of the same set. Prove that

 $A \triangle C \subseteq (A \triangle B) \cup (B \triangle C)$

(b) Now let X = [0,1] or $[0,1]^2$. Let A be a subset of X, and suppose that for every $\varepsilon > 0$ there exists a measurable subset $B \subseteq X$ such that $m^*(A \triangle B) < \varepsilon$. Prove that A is measurable.

7. Problem 7 from Kolmogorov-Fomin (p. 268). Note that the hint given in KF is essentially a sketch of the solutions. The things you need to justify are

- (a) $C = \bigcup_{n=-\infty}^{\infty} \Phi_n$
- (b) $\Phi_n \cap \Phi_m = \emptyset$ if $n \neq m$
- (c) Assume that Φ_0 is measurable. Then each Φ_n is measurable and $\mu(\Phi_n) = \mu(\Phi_0)$ for all $n \in \mathbb{Z}$
- (d) the conclusion of (c) contradicts (33) in KF.

Remark: The Lebesgue measure on the circle C can be defined in exactly the same way as on \mathbb{R} with the exception that we call a subset of C elementary if it is a finite union of arcs.

8. Problem 1(a)(b)(d) on page 450 in Pugh.

 $\mathbf{2}$

Hint for 1(b): WOLOG assume that $0 \le a < b$. Start by showing that any continuous function in $g \in C[a,b]$ can be written as $g(x) = h(x^2)$ for some continuous function $h \in C[a^2, b^2]$.

Hint for 2(a): Use the fact that any non-constant polynomial p(x) tends to $\pm \infty$ as $x \to \infty$.

4

Hint for 2(b): It is enough to prove the result for intervals of the form [-k, k] for $k \in \mathbb{N}$ (why?). To construct a sequence of polynomials $\{p_n\}$ s.t. $p_n \rightrightarrows f$ on [-k, k] for each k, apply Weierstrass Approximation Theorem on each interval and then use a diagonal-type argument.

Hint for 4(a): Show that any open subset of \mathbb{R}^2 can be written as a union of squares whose endpoints have rational coordinates.

6