
Homework #1. Due Friday, September 7th, by 1pm in my mailbox

Reading:

1. For this homework assignment: In Pugh: Section 1.2 (cuts); in Rudin:

Chapter 1

2. Before the class on Tue, Sep 1: Basics on cardinality of sets (1.4 in Pugh

or 2.1 in Rudin)

Before the class on Thu, Sep 3: Metric spaces, open and closed sets (2.1 and

parts of 2.3 and 2.6 in Pugh and 2.2 in Rudin).

Problems:

1. Prove that C (complex numbers) cannot be made an ordered field (no

matter how the order relation < is defined). Note: in class we proved this

for lexicographic order; the general proof is not much more complicated.

2. Let S be a subset of R bounded above, and let −S = {−x : x ∈ S}.
Prove that −S is bounded below and inf(−S) = − sup(S).

3. Let S be an ordered set and A and B subsets of S such that

(i) a ≤ b for any a ∈ A and b ∈ B;

(ii) sup(A) and inf(B) exist in S.

Prove that sup(A) ≤ inf(B) (there is a hint at the end of the assignment).

4. Let (X,<) be an ordered set. A subset S of X will be called basic if the

following is true: if s ∈ S and x ∈ X and x < s, then x ∈ S (that is, for each

element s ∈ S, all elements of X smaller than s also lie in S). For instance,

any interval of the form (−∞, α) or (−∞, α] is a basic subset of R.

(a) Given a ∈ X, define D<(a) = {x ∈ X : x < a} and D≤(a) = {x ∈ X :

x ≤ a}. Prove that the sets D<(a) and D≤(a) are basic.

(b) Let S ⊆ X be a basic set, and suppose that sup(S) exists (in X; we

do not assume that sup(S) ∈ S). Prove that S = D<(sup(S)) or

S = D≤(sup(S)). Hint: It is clear that S ⊆ D≤(sup(S)) for any set S

such that sup(S) exists; suppose now that S is also basic and that S

is different from D<(sup(S)) and D≤(sup(S)). This implies that there

exists y ∈ X such that y < sup(S) and y 6∈ S (explain why). Now
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use the fact that S is basic to get a contradiction with the definition of

sup(S).

In parts (c) and (d) of this problem X = C and < is the lexicographic order

relation on C defined as follows: a + bi < c + di (with a, b, c, d ∈ R) ⇐⇒
a < c or (a = c and b < d)

(c) For each z = u+ vi ∈ C describe explicitly the set D<(z)

(d) Find an (explicit) example of a non-empty subset S of C which is

bounded above but such that sup(S) does not exist (and prove that

your subset has the required property). Hint: According to part (b) it

is enough to find a set S which is basic, bounded above and such that

S is not equal to D<(z) or D≤(z) for any z ∈ C (the latter condition

can be verified using the answer in (c)).

5. Give a detailed and rigorous proof of the fact that

lim
n→∞

2n+ 3

3n+ 4
=

2

3

directly from the definition of limit of a sequence.

6. Let S = {x ∈ Q : x <
√

2}. Prove by contradiction that S does not have

a supremum in Q in two ways:

(a) Assuming the existence of R and the fact that Q is dense in R, that is,

every non-empty open interval in R contains a rational number

(b) (bonus) using just Q. For this problem use the description of S which

does not involve
√

2, e.g. S = {x ∈ Q : x < 0 or x2 < 2}.

7. Deduce the Intermediate Value Theorem and Extreme Value Theorems

directly from the following four results (which will be proved later in the

course):

(1) Let I = [a, b] be a closed bounded interval in R, and consider I as a

metric space with the standard metric (d(x, y) = |x − y|). Then I is

compact and connected.

(2) Let S ⊆ R be a subset which is both compact and connected (again

with respect to the standard metric). Then S = ∅ or S = [a, b] for

some a, b ∈ R with a ≤ b.
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(3) Let X and Y be metric spaces and f : X → Y be a continuous function.

If X is connected, then f(X) is connected (as usual f(X) = {f(x) :

x ∈ X} is the image (=range) of f).

(4) Let X and Y be metric spaces and f : X → Y be a continuous function.

If X is compact, then f(X) is compact.

Note: The definitions of compactness and connectedness for metric spaces

are given in Chapter 2 of both Pugh and Rudin, but they are not needed

for this problem (all you need to know is that these are certain properties of

metric spaces).
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Hint for Problem 3: First show that supA ≤ b for every b ∈ B – this

follows directly from the definition of supremum.
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