Math 4310. Fall 2018. Extra practice problems the first midterm.

- **1.** Let X be a metric space.
- (a) Prove that if X is covering compact, then X is bounded directly from the definition of covering compactness.
- (a) Assume that X is sequentially compact and Y is a closed subset of X. Prove that Y is sequentially compact directly from the definition of sequential compactness.

2. Let X be a complete metric space. Prove that any closed subset of X is complete.

3. Prove Lemma 10.6 from class; if $\{x_n\}$ is a Cauchy sequence in some metric space X, and $\{x_n\}$ contains a convergent (in X) subsequence, then $\{x_n\}$ converges in X. **Hint:** One can give a very short proof using the existence of completion of X (really all you need to know is that X is a subset of some complete metric space \widehat{X}).

- Problems from Pugh:
- (a) Problem 40 after Chapter 1
- (b) Problems 7, 13, 14, 22, 28(a)-(d), 44, 55(a), 96, 108, 116, 125, 140 after Chapter 2.