
Homework #6. Due Thursday, October 15th, in class

Reading:

1. For this homework assignment: Section 4.4 (continuity and connect-

edness) + class notes (Lectures 11-12).

2. For next week’s classes: Fixed points and contraction mapping theo-

rem (see Rudin 9.3, pp. 220 and Kolmogorov-Fomin 8.1), Sections 7.1-7.3

in Rudin (discussion of main problem, uniform convergence, uniform con-

vergence and continuity).

Problems:

Note on hints: All hints are given at the end of the assignment, each on

a separate page. Problems (or parts of problems) for which hint is available

are marked with *.

1*. (bonus) Problem 1(b) from HW#5.

2*. Let X be a metric space. Prove that X is disconnected if and only if

there exists a continuous function f : X → R such that f(X) = {1,−1}.
3.

(a*) Let X be a disconnected metric space, so that X = A tB for some

non-empty closed subsets A and B. Prove that if C is any connected

subset of X, then C ⊆ A or C ⊆ B.

(b*) A metric space X is called path-connected if for any x, y ∈ X there

exists a continuous function f : [0, 1] → X such that f(0) = x and

f(1) = y (informally, this means that any two points in X can be

joined by a path in X). Prove that any path-connected metric space

is connected.

4*. Let X be a metric space, {Xα}α∈I a collection (not necessarily finite)

of subsets of X such that ∩α∈IXα is non-empty and ∪α∈IXα = X. Prove

that if each Xα is connected, then X is connected.

5. (practice) Metric spaces (X, dX) and (Y, dX) are called isometric if

there exists a bijection f : X → Y such that dY (f(a), f(b)) = dX(a, b) for

all a, b ∈ X. Prove that all abstract properties of metric spaces introduced

in this class are preserved under isometries, that is, if (X, dX) and (Y, dY )

are isometric and X is compact, then Y is compact; if X is connected, then

Y is connected etc.
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6. Let (X, dX) and (Y, dY ) be metric spaces, and consider the product

space X × Y with metric d given by d((x1, y1), (x2, y2)) = dX(x1, x2) +

dY (y1, y2) (this is indeed a metric by HW#5.1).

(a) Prove that for every x ∈ X, the subset {x} × Y = {(x, y) : y ∈ Y }
of X × Y is isometric to Y . Likewise for every y ∈ Y , the subset

X × {y} = {(x, y) : x ∈ X} is isometric to X.

(b*) Prove that if X and Y are both connected, then X × Y connected.

7. The goal of this problem is to prove that any open subset of R (with

standard metric) is a disjoint union of at most countably many open inter-

vals.

So, let U be any open subset of R.

(a) Define the relation ∼ on U by setting x ∼ y ⇐⇒ x = y or (x < y

and [x, y] ⊂ U) or (y < x and [y, x] ⊂ U). Prove that ∼ is an

equivalence relation.

(b*) Let A be an equivalence class with respect to ∼. Show that A is an

open interval.

(c*) Deduce from (b) that U is a disjoint union of open intervals. Then

prove that the number of those intervals is at most countable.

8. Use Problem 6 to show that the analogue of Problem 7 does not hold in

R2, that is, there exist open subsets of R2 which are not representable as

disjoint unions of open discs (an open disc is an open ball in R2).
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Comment on 1: Let {an,k}n,k∈N be a “double-index sequence” of real

numbers, that is, a collection of real numbers indexed by two independent

parameters n and k each of which ranges over N. Consider the following two

conditions on {an,k}:
(i) for every ε > 0 there exists M ∈ N such that |an,k| < ε for all

n, k ≥M

(ii) lim
k→∞

( lim
n→∞

an,k) = 0.

Note that if {xn} is a sequence in some metric space (X, d) and we set

an,k = d(xn, xk) for all n, k ∈ N, then (i) holds ⇐⇒ {xn} is Cauchy (by

definition), and (ii) is the condition from Problem 1 in HW#5.

In general, (i) always implies (ii) (the proof is identical to that of Prob-

lem 1(a) in HW#5), but (ii) does not imply (i) in general. For instance,

let an,k = k
n . Then for any k we clearly have lim

n→∞
an,k = 0, whence

lim
k→∞

( lim
n→∞

an,k) = 0, so (ii) holds. On the other hand, (i) does not hold

since, for instance, an,n = 1 for all n.

Problem 1(b) asserts that (ii) does imply (i) in the special case when

an,k = d(xn, xk) for some sequence {xn} in a metric space. In view of the

above example, it is clear that one must use some properties of the distance

function (that is, axioms of a metric space) in order to prove this implication.
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Hint for 2: The “⇐” direction is easy. For the “⇒” direction, assume

that X = A t B with A,B closed, and show that the function f : X → R
given by

f(x) =

{
1 if x ∈ A
−1 if x ∈ B

is continuous.
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Hint for 3(a): Use Problem 2 in Homework#3.

Hint for 3(b): Use (a) and Theorem 11.1 from class (=Theorem 4.22

from Rudin).
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Hint for 4: Assume that X is disconnected and use 3(a) to reach a

contradiction.
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Hint for 6(b): By 5 and 6(a) all subsets of the form X×{y} and {x}×Y
are connected. Start with this fact and use Problem 4 twice. Drawing a

picture in the case X = Y = [0, 1] will likely be helpful.
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Hint for 7(b): First prove that A has Intermediate Value Property (as

defined in class), and therefore A is an interval by Theorem 11.2 from class.

Then assume that A is not an open interval and reach a contradiction.

Hint for 7(c): Use the fact that Q is countable.


