Homework #5. Due Thursday, October 1st, in class Reading:

1. For this homework assignment: Sections 4.1-4.3 (limits of functions, continuous functions, continuity and compactness) + class notes (Lectures 9-10).

2. For next week's classes: 2.5 (connected sets), 4.4 (continuity and connectedness). We will also talk about contraction mappings and fixed points (not explicitly discussed in Rudin). Note that Rudin gives a rather non-standard definition of a connected metric space. You can look up the standard definition (which we will introduce in class) on wikipedia (article name: connected space).

Problems:

Note on hints: All hints are given at the end of the assignment, each on a separate page. Problems (or parts of problems) for which hint is available are marked with *.

- 1. Let $\{x_n\}$ be a sequence in a metric space (X, d) .
	- (a)* Assume that $\{x_n\}$ is Cauchy. Prove that $\lim_{k\to\infty} (\lim_{n\to\infty} d(x_k, x_n)) = 0$. In other words, prove that
		- (i) for every $k \in \mathbb{N}$ the limit $\lim_{n \to \infty}$ (i) for every $k \in \mathbb{N}$ the limit $\lim_{n \to \infty} d(x_k, x_n)$ exists
		- (ii) if we set $a_k = \lim_{n \to \infty} d(x_k, x_n)$, then $\lim_{k \to \infty} a_k = 0$.
	- (b) (bonus) Prove that the converse of (a) is also true: if $\lim_{k\to\infty} (\lim_{n\to\infty} d(x_k, x_n)) =$ 0, then the sequence $\{x_n\}$ is Cauchy.

 2^* . Prove Theorem 9.1 from class: let Z be a metric space and let Y be a dense subset of Z. Suppose that every Cauchy sequence in Y converges in Z. Then Z is complete.

3. Let $(X_1, d_1), (X_2, d_2), \ldots, (X_n, d_n)$ be a finite collection of metric spaces. Let $X = \prod_{k=1}^{n} X_k$ (here the product denotes the Cartesian product of sets), and define the function $d: X \times X \to \mathbb{R}_{\geq 0}$ by

$$
d((x_1, x_2, \ldots, x_n), (y_1, \ldots, y_n)) = \sum_{k=1}^n d_k(x_k, y_k)
$$

- (a) Prove that (X, d) is a metric space. Note that if each $X_k = \mathbb{R}$ with standard metric, then $X = \mathbb{R}^n$ with Manhattan metric
- (b) For each $1 \leq k \leq n$ define the projection map $\pi_k : X \to X_k$ by $\pi((x_1,\ldots,x_n))=x_k$. Prove that π_k is continuous.

 $(c)^*$ Let $f : \mathbb{R}^n \to \mathbb{R}$ be a polynomial function, that is, f is a sum of finitely many functions f_1, f_2, \ldots, f_m where each f_i has the form $f_i(x_1,\ldots,x_n) = \alpha x_1^{d_1} \ldots x_n^{d_n}$ for some $\alpha \in \mathbb{R}$ and $d_1,\ldots,d_n \in \mathbb{Z}_{\geq 0}$ (for instance, if $n = 2$, we can have $f(x_1, x_2) = 1 + 3x_1 + 4x_1x_2 + x_2^3$). Prove that f is continuous.

4. Let X be an arbitrary metric space and $f: X \to \mathbb{R}$ a continuous function (where R is equipped with standard metric).

- (i) Prove that the sets $\{x \in X : f(x) > 0\}$ and $\{x \in X : f(x) < 0\}$ are open and the set $\{x \in X : f(x) = 0\}$ is closed
- (ii) Prove that if $g: X \to \mathbb{R}$ is another continuous function, then the set ${x \in X : f(x) = g(x)}$ is closed
- 5.
- (a) Let X be any set with discrete metric $(d(x, y) = 1$ if $x \neq y$ and $d(x, y) = 0$ if $x = y$. Prove that for any metric space Y, any function $f: X \to Y$ is continuous.
- (b) Use (a) to show that there exist metric spaces X and Y and a function $f: X \to Y$ such that f is continuous and bijective, but $f^{-1}: Y \to X$ is not continuous (recall that we proved in class that this cannot happen if X is compact).
- 6. This problem outlines a different proof of Theorem 10.5 from class.

Theorem 10.5: Let (X, d_X) and (Y, d_Y) be metric spaces, and assume that X is compact. Then any continuous function $f : X \rightarrow Y$ is uniformly continuous.

Outline: Suppose that $f : X \to Y$ is continuous, but not uniformly continuous. First show that there exist $\varepsilon > 0$ and sequences $\{a_n\}$ and $\{b_n\}$ in X such that $d_X(a_n, b_n) < \frac{1}{n}$ $\frac{1}{n}$, but $d_Y(f(a_n), f(b_n)) \geq \varepsilon$ for all *n*. Since X is compact, it is sequentially compact, so there exists a subsequence $\{a_{n_k}\}$ which converges to some $a \in X$. Use the fact that $d_X(a_n, b_n) \to 0$ as $n \to \infty$ to deduce that the sequence ${b_{n_k}}$ converges to a as well. Now use Theorem 9.2 (sequential characterization of continuity) to reach a contradiction with the assumption that $d_Y(f(a_n), f(b_n)) \geq \varepsilon$ for all n.

2

Hint for 1(a): Part (i) follows from one of the problems in $HW#4$. For part (ii) use the fact that if $\{b_n\}$ is a convergent sequence of real numbers and there exist $M \in \mathbb{N}$ and $C \in \mathbb{R}$ such that $|b_n| \leq C$ for all $n \geq M$, then $|\lim_{n\to\infty}b_n|\leq C.$

Hint for 2: Show that for any sequence $\{z_n\}$ in Z there is a sequence $\{y_n\}$ in Y such that $d(y_n, z_n) \to 0$ as $n \to \infty$; then show that if $\{z_n\}$ is Cauchy, then $\{y_n\}$ is also Cauchy.

4

Hint for 3(c): Use 3(b) and a suitable theorem from Rudin.

Hint for 5: You can construct an example where $X = Y$ as sets (but with different metrics) and $f: X \to Y$ is the identity function $(f(x) = x$ for all x).

6