
Homework #5. Due Thursday, October 1st, in class

Reading:

1. For this homework assignment: Sections 4.1-4.3 (limits of functions,

continuous functions, continuity and compactness) + class notes (Lectures

9-10).

2. For next week’s classes: 2.5 (connected sets), 4.4 (continuity and connect-

edness). We will also talk about contraction mappings and fixed points (not

explicitly discussed in Rudin). Note that Rudin gives a rather non-standard

definition of a connected metric space. You can look up the standard defini-

tion (which we will introduce in class) on wikipedia (article name: connected

space).

Problems:

Note on hints: All hints are given at the end of the assignment, each on

a separate page. Problems (or parts of problems) for which hint is available

are marked with *.

1. Let {xn} be a sequence in a metric space (X, d).

(a)* Assume that {xn} is Cauchy. Prove that lim
k→∞

( lim
n→∞

d(xk, xn)) = 0.

In other words, prove that

(i) for every k ∈ N the limit lim
n→∞

d(xk, xn) exists

(ii) if we set ak = lim
n→∞

d(xk, xn), then lim
k→∞

ak = 0.

(b) (bonus) Prove that the converse of (a) is also true: if lim
k→∞

( lim
n→∞

d(xk, xn)) =

0, then the sequence {xn} is Cauchy.

2*. Prove Theorem 9.1 from class: let Z be a metric space and let Y be a

dense subset of Z. Suppose that every Cauchy sequence in Y converges in

Z. Then Z is complete.

3. Let (X1, d1), (X2, d2), . . . , (Xn, dn) be a finite collection of metric spaces.

Let X =
∏n

k=1Xk (here the product denotes the Cartesian product of sets),

and define the function d : X ×X → R≥0 by

d((x1, x2, . . . , xn), (y1, . . . , yn)) =
n∑

k=1

dk(xk, yk)

(a) Prove that (X, d) is a metric space. Note that if each Xk = R with

standard metric, then X = Rn with Manhattan metric

(b) For each 1 ≤ k ≤ n define the projection map πk : X → Xk by

π((x1, . . . , xn)) = xk. Prove that πk is continuous.
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(c)* Let f : Rn → R be a polynomial function, that is, f is a sum of

finitely many functions f1, f2, . . . , fm where each fi has the form

fi(x1, . . . , xn) = αxd11 . . . xdnn for some α ∈ R and d1, . . . , dn ∈ Z≥0
(for instance, if n = 2, we can have f(x1, x2) = 1+3x1+4x1x2+x32).

Prove that f is continuous.

4. Let X be an arbitrary metric space and f : X → R a continuous function

(where R is equipped with standard metric).

(i) Prove that the sets {x ∈ X : f(x) > 0} and {x ∈ X : f(x) < 0} are

open and the set {x ∈ X : f(x) = 0} is closed

(ii) Prove that if g : X → R is another continuous function, then the set

{x ∈ X : f(x) = g(x)} is closed

5.

(a) Let X be any set with discrete metric (d(x, y) = 1 if x 6= y and

d(x, y) = 0 if x = y). Prove that for any metric space Y , any

function f : X → Y is continuous.

(b) Use (a) to show that there exist metric spaces X and Y and a

function f : X → Y such that f is continuous and bijective, but

f−1 : Y → X is not continuous (recall that we proved in class that

this cannot happen if X is compact).

6. This problem outlines a different proof of Theorem 10.5 from class.

Theorem 10.5: Let (X, dX) and (Y, dY ) be metric spaces, and assume that

X is compact. Then any continuous function f : X → Y is uniformly

continuous.

Outline: Suppose that f : X → Y is continuous, but not uniformly con-

tinuous. First show that there exist ε > 0 and sequences {an} and {bn} in

X such that dX(an, bn) < 1
n , but dY (f(an), f(bn)) ≥ ε for all n. Since X

is compact, it is sequentially compact, so there exists a subsequence {ank
}

which converges to some a ∈ X. Use the fact that dX(an, bn)→ 0 as n→∞
to deduce that the sequence {bnk

} converges to a as well. Now use Theo-

rem 9.2 (sequential characterization of continuity) to reach a contradiction

with the assumption that dY (f(an), f(bn)) ≥ ε for all n.
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Hint for 1(a): Part (i) follows from one of the problems in HW#4. For

part (ii) use the fact that if {bn} is a convergent sequence of real numbers

and there exist M ∈ N and C ∈ R such that |bn| ≤ C for all n ≥ M , then

| lim
n→∞

bn| ≤ C.
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Hint for 2: Show that for any sequence {zn} in Z there is a sequence {yn}
in Y such that d(yn, zn) → 0 as n → ∞; then show that if {zn} is Cauchy,

then {yn} is also Cauchy.
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Hint for 3(c): Use 3(b) and a suitable theorem from Rudin.
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Hint for 5: You can construct an example where X = Y as sets (but with

different metrics) and f : X → Y is the identity function (f(x) = x for all

x).


