Homework #12. Not due Reading:

For this homework assignment: Sections 28 and 29.1 from Kolmogorov-Fomin (class handout) + class notes (Lectures 25-27); alternative reference is Rudin, Sections 11.4 (measurable functions), 11.5 (simple functions) and beginning of 11.6 (integration).

Let X be a metric space and A a subset of X. Recall that

- A is called *nowhere dense* if for every non-empty open subset U of X there exists a non-empty open subset V of U with $V \cap A = \emptyset$.
- A is a called an F_{σ} -set if A is countable union of closed sets.
- A is a called a G_{δ} -set if A a countable intersection of open sets.

Problems:

1*. Let X be a metric space and A a subset of X. Prove that the following four conditions are equivalent:

- (i) A is nowhere dense
- (ii) for every non-empty open ball U in X there exists a non-empty open ball V contained in U with $V \cap A = \emptyset$.
- (iii) $X \setminus A$ contains an open dense subset of X
- (iv) $(\overline{A})^o = \emptyset$, that is, the closure of A has empty interior (interior is a shortcut for "the set of interior points"). Recall that the notion of an interior point of a subset was defined in Homework #2.
- **2.** Let X be a metric space.
 - (i) Let A be a subset of X. Prove that A is an F_{σ} -set $\iff X \setminus A$ is a G_{δ} -set.
 - (ii) Prove that the collection of all F_{σ} -sets in X is closed under countable unions and the collection of all G_{δ} -sets in X is closed under countable intersections.
 - (iii)* Let $X = \mathbb{R}$ (with standard metric). Prove that every open subset of X is an F_{σ} -set and every closed subset of X is a G_{δ} -set.

3. Let $D : \mathbb{R} \to \mathbb{R}$ be the Dirichlet function (defined by D(x) = 1 if $x \in \mathbb{Q}$ and 0 if $x \notin \mathbb{Q}$), and let a < b be real numbers.

- (a) Prove that D is Lebesgue-integrable on [a, b] and that $\int D d\mu = 0$.
- (b) Prove that D is not Riemann-integrable on [a, b].
- 4*. Rudin, Problem 3 after Chapter 11 (p. 332).

[a,b]

5. Kolmogorov-Fomin, Problem 6 after Section 28 (p.292)

6. Kolmogorov-Fomin, Problem 8 after Section 28 (p.292). **Note:** The functions $f_i^{(k)}$ are only defined for $1 \le i \le k$. It is probably useful to start by drawing the graphs of the first few functions in the sequence (say for k = 1, 2, 3).

Hint for 1: It is probably the most convenient to first prove (i) \iff (ii) and then (i) \Rightarrow (iii) \Rightarrow (iv) \Rightarrow (i).

Hint for 2(iii): Start by showing that every open interval is an F_{σ} -set. Once this is done, the rest follows by direct combination of previously known results.

4

Hint for 4: Use Cauchy criterion to express the set in question in terms of sets of the form $\{x : |f_n(x) - f_m(x)| < \frac{1}{k}\}$ using countable unions and countable intersections.