
Homework #1. Due Thursday, September 3rd, in class

Reading:

1. For this homework assignment: Chapter 1.

2. Before the class on Tue, Sep 1: Section 2.1 (finite, countable and uncount-

able sets). Before the class on Thu, Sep 3: Section 2.2 (metric spaces).

Below Rudin x.y refers to Problem y after Chapter x in Rudin.

Problems:

1. Prove that C (complex numbers) cannot be made an ordered field (no

matter how the order relation < is defined). Note: in class we proved this

for lexicographic order; the general proof is not much more complicated.

2. Rudin 1.5.

3. Let S be an ordered set and A and B subsets of S such that

(i) a ≤ b for any a ∈ A and b ∈ B;

(ii) sup(A) and inf(B) exist in S.

Prove that sup(A) ≤ inf(B).

4. Let (X,<) be an ordered set. A subset S of X will be called basic if the

following is true: if s ∈ S and x ∈ X and x < s, then x ∈ S (that is, for each

element s ∈ S, all elements of X smaller than s also lie in S). For instance,

any interval of the form (−∞, α) or (−∞, α] is a basic subset of R.

(a) Given a ∈ X, define D<(a) = {x ∈ X : x < a} and D≤(a) = {x ∈ X :

x ≤ a}. Prove that the sets D<(a) and D≤(a) are basic.

(b) Let S ⊆ X be a basic set, and suppose that sup(S) exists (in X; we

do not assume that sup(S) ∈ S). Prove that S = D<(sup(S)) or

S = D≤(sup(S)). Hint: It is clear that S ⊆ D≤(sup(S)) for any set S

such that sup(S) exists; suppose now that S is also basic and that S

is different from D<(sup(S)) and D≤(sup(S)). This implies that there

exists y ∈ X such that y < sup(S) and y 6∈ S (explain why). Now

use the fact that S is basic to get a contradiction with the definition of

sup(S).
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In parts (c) and (d) of this problem X = C and < is the lexicographic order

relation on C defined as follows: a + bi < c + di (with a, b, c, d ∈ R) ⇐⇒
a < c or (a = c and b < d)

(c) For each z = u+ vi ∈ C describe explicitly the set D<(z)

(d) Find an (explicit) example of a non-empty subset S of C which is

bounded above but such that sup(S) does not exist (and prove that

your subset has the required property). Hint: According to part (b) it

is enough to find a set S which is basic, bounded above and such that

S is not equal to D<(z) or D≤(z) for any z ∈ C (the latter condition

can be verified using the answer in (c)).

5. Give a detailed and rigorous proof of the fact that

lim
n→∞

2n+ 3

3n+ 4
=

2

3

directly from the definition of limit of a sequence.

6. (practice) Let k be a positive integer, and let x, y ∈ Rk, with x 6= 0 and

y 6= 0. According to Theorem 1.37(e), we always have inequality |x + y| ≤
|x| + |y|. Prove that equality holds ⇐⇒ y = λx for some scalar λ > 0.

Hint: The backwards direction is easy. For the forward direction assume

that |x + y| = |x| + |y|. First use the proof of Theorem 1.37 to deduce that

x · y = |x||y|. Then use the proof of the Schwartz inequality (Theorem 1.35

in Rudin) to show that (x · y)2 = |x|2|y|2 forces the vectors x and y to be

proportional (that is, y = λx for some λ ∈ R \ {0}).
7. (bonus) Deduce the Intermediate Value Theorem and Extreme Value

Theorems directly from the following four results (which will be proved later

in the course):

(1) Let I = [a, b] be a closed bounded interval in R, and consider I as a

metric space with the standard metric (d(x, y) = |x − y|). Then I is

compact and connected.

(2) Let S ⊆ R be a subset which is both compact and connected (again

with respect to the standard metric). Then S = ∅ or S = [a, b] for

some a, b ∈ R with a ≤ b.

(3) Let X and Y be metric spaces and f : X → Y be a continuous function.

If X is connected, then f(X) is connected (as usual f(X) = {f(x) :

x ∈ X} is the image (=range) of f).
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(4) Let X and Y be metric spaces and f : X → Y be a continuous function.

If X is compact, then f(X) is compact.

Note: The definitions of compactness and connectedness for metric spaces

are given in Chapter 2 of Rudin, but they are not needed for this problem

(all you need to know is that these are certain properties of metric spaces).

Hint for Problem 3: First show that supA ≤ b for every b ∈ B – this

follows directly from the definition of supremum.
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