
6. Congruences

Definition. Fix an integer n ≥ 2. Given a, b ∈ Z, we say that a and b are

congruent mod n and write a ≡ b mod n if n | (b− a).

Note that

a ≡ b mod n ⇐⇒ n | (b− a) ⇐⇒ b− a = nk for some k ∈ Z

⇐⇒ b = a + nk for some k ∈ Z.

We started with basic properties of congruences. In all four theorems

below n is a fixed integer ≥ 2.

Theorem 6.1 (Congruence is an equivalence relation). The following hold:

(i) x ≡ x mod n for all x ∈ Z
(ii) If x ≡ y mod n for some x, y ∈ Z, then y ≡ x mod n

(iii) If x ≡ y mod n and y ≡ z mod n for some x, y, z ∈ Z, then x ≡ z

mod n.

Proof. One can prove properties (i)-(iii) using divisibility properties from

Lecture 4, but it is more convenient to deduce them directly from the fact

that a ≡ b mod n ⇐⇒ b− a = nk for some k ∈ Z.

(i) x ≡ x mod n since x− x = 0 = n · 0.

(ii) Suppose x ≡ y mod n. Then y − x = nk for some k ∈ Z, so x− y =

−nk = n(−k), so y ≡ x mod n

(iii) Suppose x ≡ y mod n and y ≡ z mod n. Then y − x = nk and

z − y = nl for some k, l ∈ Z, whence z − x = nk + nl = n(k + l), so x ≡ z

mod n. �

Theorem 6.2. Suppose x ≡ y mod n for some x, y ∈ Z. Then x+z ≡ y+z

mod n and xz ≡ yz mod n for all z ∈ Z

Proof. We are given that x ≡ y mod n, so y − x = nk for some k ∈ Z.

Then (y + z) − (x + z) = y − x = nk, so x + z ≡ y + z mod n. Also

yz − xz = (y − x)z = n(kz), so xz ≡ yz mod n. �

Theorem 6.3 (Congruences can be added or multiplied). Suppose x ≡ y

mod n and z ≡ w mod n for some x, y, z, w ∈ Z. Then x + z ≡ y + w

mod n and xz ≡ yw mod n.

Proof. We can prove this theorem directly from the definition of congru-

ences, just as we did in Theorems 6.1 and 6.2, but it will be more convenient

to use the results of the two previous theorems instead.
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Since x ≡ y mod n and z ≡ w mod n, using Theorem 6.2 we get x+z ≡
y+z mod n (from the first congruence) and y+z ≡ y+w mod n (from the

second congruence). Using transitivity of congruences (Theorem 6.1(iii)), we

deduce that x + z ≡ y + w mod n.

The proof of the congruence xz ≡ yw mod n is analogous. �

Theorem 6.4 (Cancellation law). Suppose a and n are coprime and x, y ∈
Z. Then ax ≡ ay mod n ⇐⇒ x ≡ y mod n.

Proof. “⇐” This direction follows directly from Theorem 6.3.

“⇒” Suppose ax ≡ ay mod n, so n | (ay − ax) = a(y − x). Since a and

n are coprime, applying the Coprime Lemma (Lemma 5.1), we deduce that

n | (y − x), so x ≡ y mod n. �

Note that cancellation law is not valid if a and n are not coprime. For

instance, 2 · 3 ≡ 2 · 0 mod 6 but 3 6≡ 0 mod 6.

We proceed with solving two explicit congruences.

Example 1. Find all x ∈ Z such that 12x ≡ 36 mod 151.

Since 36 = 12 ·3 and gcd(12, 151) = 1, by cancellation law this congruence

is equivalent to x ≡ 3 mod 151. Thus the general solution is x = 3 + 151k

with k ∈ Z.

Example 2. Find all x ∈ Z such that 9x ≡ 2 mod 149.

Here we cannot apply the cancellation law since 4 is not divisible by 9; so

instead we proceed with the definition of a congruence relation.

We have 9x ≡ 2 mod 149 ⇐⇒ 2 − 9x = 149m for some m ∈ Z ⇐⇒
9x + 149m = 2 for some m ∈ Z. Rather than find all pairs (x,m) satisfying

this equation, we will find one such pair (in fact, we just need the value of

x) and then use it to describe all the solutions applying Theorem 6.5 below.

It turns out that x and m as above can be found using the Euclidean

algorithm discussed in Lecture 4. First we find u, v ∈ Z such that 9u+149v =

1 (such u and v exist since gcd(9, 149) = 1).

We have 149 = 9 · 16 + 5; 9 = 5 · 1 + 4; 5 = 4 · 1 + 1; whence 1 = 5− 4 · 1 =

5− (9− 5) = 5 · 2− 9 = (149− 9 · 16) · 2− 9 = 149 · 2− 9 · 33.

So 1 = 9 · (−33) + 149 · 2. Multiplying both sides by 2, we get 2 =

9 · (−66) + 149 · 4. Thus, the equation 9x + 149m = 2 has a particular

solution x = −66, m = 4, so x = −66 is a particular solution to the

congruence 9x ≡ 2 mod 149.

We claim that the general solution to our congruence is x = −66 + 149k

with k ∈ Z. This follows from Theorem 6.5 below.
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Theorem 6.5. Let a, b, n ∈ Z with n ≥ 2, and assume that a and n are

coprime. Then the congruence ax ≡ b mod n always has a solution, and

if x0 is a particular solution, then the general solution is x = x0 + nk with

k ∈ Z.

Proof. Existence: we proceed as we did in the above example. Since a and

n are coprime, by GCD Theorem there exist u, v ∈ Z such that au+nv = 1.

Multiplying both sides by b, we get a(ub) + n(vb) = b. If we set x0 = ub,

then b− ax0 = n(vb), so ax0 ≡ b and x0 is a particular solution.

Now we prove that if we are given any x ∈ Z, then x is a solution ⇐⇒
x = x0 + nk for some k ∈ Z. Indeed, we have

ax ≡ b mod n ⇐⇒ ax ≡ ax0 mod n by transitivity

(since we know that ax0 ≡ b mod n),

ax ≡ ax0 mod n ⇐⇒ x ≡ x0 mod n by cancellation law,

and finally x ≡ x0 mod n ⇐⇒ x = x0 + nk for some k ∈ Z as observed at

the beginning of the lecture. �

Remark: Note that the general solution can be expressed in the form

x0 + nk, k ∈ Z, for any particular solution x0. In Example 2 above we

initially found −66 to be a particular solution, so the general solution is

−66 + 149k. Setting k = 1, we get that −66 + 149k = 83 is also a solution.

Thus, we can also say that the general solution has the form x = 83 + 149k,

k ∈ Z (of course, k in the last formula is not the same as k in the formula

x = −66 + 149k).

We finish the lecture with an application of congruences (see Lecture 7

for continuation).

Lemma 6.6. For any x ∈ Z we have x2 ≡ 0 or 1 mod 4.

Proof. Divide x by 4 with remainder: x = 4q + r. We claim that x2 ≡ r2

mod 4. Indeed, x2 = (4q + r)2 = 16q2 + 8qr + r2 = 4(4q2 + 2qr) + r2, so

x2 ≡ r2 mod 4. Alternatively x = 4q + r implies that x ≡ r mod 4, and

squaring this congruence (which we can do by Theorem 6.3), we get x2 ≡ r2

mod 4.

Since r can only equal 0, 1, 2 or 3, there are 4 possible cases:

Case 1: r = 0. Then r2 = 0, so x2 ≡ 0 mod 4, as desired.

Case 2: r = 1. Then r2 = 1, so x2 ≡ 1 mod 4

Case 3: r = 2. Then r2 = 4. Since 4 ≡ 0 mod 4, using transitivity, we

get x2 ≡ 0 mod 4

Case 4: r = 3. Then r2 = 9 ≡ 1 mod 4, so x2 ≡ 1 mod 4.
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Thus, we showed that in all possible cases x2 ≡ 0 or 1 mod 4. �

6.1. Book references. This lecture follows [Gilbert, 2.5] quite closely. Pin-

ter’s book introduces congruences in Chapter 23; however, it contains almost

no discussion of the algorithm for solving congruences.


