
3. Mathematical induction. Axioms of integers. Division

Algorithm.

3.1. Mathematical induction. The general setup where the method of

mathematical induction may be applicable is as follows. Suppose that for

every n ∈ N we are given some statement P (n), depending on n, e.g.

1 + . . . + n =
n(n + 1)

2
P (n).

The statement may have the form of an equality, inequality or something

more involved. We wish to prove that P (n) is true for all n ∈ N. The

method of mathematical induction asserts that this can be accomplished in

two stages:

(i) (Induction base) Prove that P (1) is true

(ii) (Induction step) For every n ∈ N prove the implication “P (n) ⇒
P (n+1)”, that is, assume that P (n) is true and deduce that P (n+1)

is true.

Indeed, if we verified (i) and (ii), then the following sequence of implications

shows that P (n) must be true for all n ∈ N:

P (1)⇒ P (2)⇒ P (3)⇒ . . .

Example 3.1. Prove that 1 + . . . + n = n(n+1)
2 for all n ∈ N.

For simplicity of notation in this example we let sn = 1 + . . . + n. Thus

the statement P (n) we have to prove in this problem can be rewritten as

sn =
n(n + 1)

2
P (n)

Note that by definition s1 = 1 and sn+1 = (1 + . . . + n) + (n + 1) =

sn + (n + 1). The conditions s1 = 1 and sn+1 = sn + (n + 1) for all n ∈ N
completely determine the sequence {sn}, so from this point on we can forget

about the original definition of sn and work with this recursive definition.

Base case: n = 1. We need to check that s1 = 1(1+1)
2 . This is true since

s1 = 1 by definition and 1(1+1)
2 = 1 as well.

Induction step. “P (n) ⇒ P (n + 1)”. Now we fix n and assume that

sn = n(n+1)
2 . Our goal is to show that sn+1 = (n+1)((n+1)+1)

2 = (n+1)(n+2)
2 .

We shall compute both sn+1 and (n+1)(n+2)
2 and show that they are equal

to each other. Multiplying out, we have (n+1)(n+2)
2 = n2+3n+2

2 = n2

2 + 3n
2 + 1.

On the other hand, using the recursive relation sn+1 = sn + (n+ 1) and the
1



2

inductive hypothesis sn = n(n+1)
2 , we get

sn+1 = sn + (n+ 1) =
n(n + 1)

2
+ (n+ 1) =

n2

2
+

n

2
+ n+ 1 =

n2

2
+

3n

2
+ 1.

Thus, we proved that sn+1 = (n+1)(n+2)
2 , so P (n+1) is true. This completes

the induction step.

Example 3.2. Prove that for every n ∈ N

there exist an, bn ∈ Z such that (1 +
√

2)n = an + bn
√

2. P (n)

In this problem the statement P (n) is more complicated as it does not

specify the values of an and bn (they are for us to choose; all we have to

make sure is that an, bn ∈ Z). We shall solve this problem by induction as

follows: first we will define a1, b1 ∈ Z so that P (1) is true. Then, for every

n ∈ N, we will assume that P (n) is true and then define an+1 and bn+1

recursively in terms of an and bn so that P (n + 1) is true.

Base case: n = 1. We set a1 = b1 = 1. Then a1 + b1
√

2 = 1 +
√

2 =

(1 +
√

2)1, so P (1) is true.

Induction step. Now assume that P (n) is true, so that (1 +
√

2)n =

an + bn
√

2 for some an, bn ∈ Z. Before defining an+1 and bn+1, we compute

(1 +
√

2)n+1 using the above formula for (1 +
√

2)n. We have

(1+
√

2)n+1 = (1+
√

2)n·(1+
√

2) = (an+bn
√

2)(1+
√

2) = (an+2bn)+(an+bn)
√

2.

Now it is clear how to define an+1 and bn+1: we set an+1 = an + 2bn

and bn+1 = an + bn. Then (1 +
√

2)n+1 = an+1 + bn+1

√
2 by the above

computation. Also, since an, bn ∈ Z by inductive hypothesis and since in-

tegers are closed under addition and multiplication by 2, we conclude that

an+1, bn+1 ∈ Z. Thus, we verified that P (n + 1) is true.

Here are a few standard variations one sometimes needs to make when

doing an induction proof.

(i) Sometimes it is technically more convenient to do the induction step

in the form “P (n − 1) ⇒ P (n)” (instead of P (n) ⇒ P (n + 1)). Of

course, in this case we assume that n ≥ 2 in the induction step.

(ii) We may be asked to prove that certain statement P (n) holds for all

integers n ≥ a for some a 6= 1. In this case proof by induction works

the same except that in the base case we verify P (a), not P (1).

(iii) It is possible that the statement P (n) holds for all n ∈ N, but the

natural argument for the induction step does not work for some

small values of n (say, it only works for n ≥ 3). In this case we

verify P (1), P (2) and P (3) separately as part of the base case.
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(iv) Finally, sometimes we need to use the complete induction (or strong

induction in Pinter’s terminology). In this case, for the induction

step we assume not only that P (n) is true but that P (k) is true for

all k ≤ n (that is, P (1), P (2), . . . , P (n) are all true) and deduce that

P (n + 1) is true. Note that the logical justification of a proof by

complete induction remains the same.

3.2. Axioms of integers. Over the next few lectures we will study arith-

metic properties of integers (as usual denoted by Z) – here by arithmetic

properties we mean properties dealing with concepts like divisibility, greatest

common divisor, prime factorization, congruences etc.

We will begin by stating axioms of integers. We will not aim to deduce

every single property of integers we shall need from these axioms and will

allow ourselves to use some very basic properties of integers (which you

would normally consider completely obvious) without explicitly showing how

they follow from axioms (typical examples of such properties are mentioned

below). However, we shall try to give complete proofs for all arithmetic

properties of integers (in the sense of the previous paragraph).

There are three groups of axioms of integers, denoted below by (Z1)-(Z3).

The first two groups of axioms have already been discussed (in a broader

context) in Lectures 1 and 2.

(Z1) Z is a commutative ring with 1

(Z2) Z is an ordered ring.

Note that while both (Z1) and (Z2) are formally stated as a single property,

unwinding the definitions of a commutative ring with 1 and ordered ring,

respectively, we see that both (Z1) and (Z2) combine several properties.

The third group (Z3) contains just one axiom, usually known as a well-

ordering principle:

(Z3) (Well-ordering principle) Let Z>0 = N denote the set of all positive

integers. Then every non-empty subset of Z>0 has the smallest el-

ement. In other words, if S ⊆ Z>0 is any non-empty subset, then

there exists m ∈ S such that m ≤ x for all x ∈ S.

Remark: 1. The statement of the well-ordering principle remains true if

Z>0 = N is replaced by Z≥0, the set of all non-negative integers (this claim is

left as an exercise). Sometimes it will be more convenient to use this version

of the well-ordering principle.

2. Note that the well-ordering principle would become false if we replace

Z>0 by Q>0 (positive rationals) or R>0 (positive reals). Indeed, the set
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of all positive rationals has no smallest element since for every q ∈ Q>0

the number q
2 is an element of Q>0 which is less than q. The well-ordering

principle would also become false if we replace positive integers by all integers

(the set of all integers has no smallest element). Finally, we do not need

to assume that the subset S in (Z3) is non-empty, as the empty set has no

elements at all, and in particular it has no smallest element.

We now proceed by stating a few additional (intuitively obvious) proper-

ties of integers which we will accept without proof (even though it does not

make much work to deduce them from (Z1)-(Z3)).

Induction Property: Let S be a subset of N satisfying the following

two conditions:

(i) 1 ∈ S

(ii) n ∈ S ⇒ n + 1 ∈ S for every n ∈ Z>0

Then S = N.

If we go back to our description of the principle of mathematical induction

and look at the justification provided, we will see that what we implicitly

used is precisely the induction property above.

It is not hard to show that the induction property is equivalent to the well-

ordering principle, that is, the well-ordering principle implies the induction

property and vice versa the induction property implies the well-ordering

principle. For this reason it is common to replace the well-ordering principle

by the induction property in the list of axioms of integers.

Here are some additional properties that we shall commonly use without

explicit reference:

(i) n ≥ 1 for every n ∈ N.

(ii) For every n ∈ N there are only finitely many m ∈ N such that m ≤ n.

Property (i) is very easy to prove by induction, and it takes a bit more

work to formally prove (ii).

3.3. Division with remainder (aka division algorithm). We finish this

lecture by proving the theorem about division with remainder for integers.

Theorem 3.3 (Division with remainder). Let a, b ∈ Z with b 6= 0. Then

there exist unique q, r ∈ Z such that a = bq + r and 0 ≤ r ≤ |b| − 1. As

usual, q is called the quotient and r is called the remainder.

Proof. As with any theorem whose statement starts with “There exists

unique ...”, the proof consists of two parts – the existence part and the

uniqueness part. It is not difficult to prove Theorem 3.3 using only axioms

(Z1)-(Z3); however we will give a slightly different proof. Our proof will not
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be entirely self-contained as we will assume some basic properties of real

numbers, but has the advantage of being slightly more intuitive.

Existence: It is convenient to divide the proof into two cases: b > 0 and

b < 0.

Case 1: b > 0. Given a real number x, denote by [x] the integer part of x.

By definition [x] is the largest integer which is ≤ x. It is clear from this

definition that

[x] ≤ x < [x] + 1 (∗ ∗ ∗)

Define q = [ab ] and r = a− bq. Then it is clear that q and r are integers and

a = bq + r. The only thing we need to check is that r satisfies the double

inequality 0 ≤ r ≤ b− 1.

Since q = [ab ] by definition, applying (***) with x = a
b we get q ≤ a

b < q+1.

Since b > 0, we can multiply by b to get bq ≤ a < b(q + 1) = bq + b.

Subtracting bq, we get 0 ≤ a − bq = r < b. Finally, since r and b are both

integers, r < b implies that r ≤ b− 1.

Thus, we proved that 0 ≤ r ≤ b− 1, as desired.

Case 2: b < 0. We will give a proof USING the result of Case 1.

Since b < 0, we have −b > 0, so we can apply the result of case 1 with a

and b replaced by −a and −b, respectively. We get that there exist q′, r′ ∈ Z
such that −a = (−b)q′ + r′ with 0 ≤ r′ < | − b| = |b|.

Multiplying both sides by −1, we get a = bq′ + (−r′). Note that this is

not the final answer since r′ is not in right range. Indeed, since 0 ≤ r′ < |b|,
we have −|b| < −r′ ≤ 0. But this problem is easy to fix.

If r′ = 0, then a = bq′, so we are done setting q′ = q and r = 0. If r′ 6= 0,

we set q = q′ + 1 and r = −r′ − b. Then bq + r = b(q′ + 1) + (−r′ − b) =

bq′+ (−r′) = a. We know that −|b| < −r′ ≤ 0; this can be rewritten simply

as b < −r′ ≤ 0 (since b < 0, we have |b| = −b). We also assume that r′ 6= 0,

so b < −r′ < 0. Subtracting b, we get 0 < −r′ − b < −b or, equivalently,

0 < r < |b|, which finishes the proof of the existence part.

Uniqueness: To prove uniqueness, we assume that there exist two dis-

tinct pairs (q, r) and (q′, r′) satisfying the desired conditions and reach a

contradiction.

So assume that there exist q, q′, r, r′ ∈ Z such that a = bq + r = bq′ + r′,

0 ≤ r, r′ < |b| and (q, r) 6= (q′, r′).

The equality bq+r = bq′+r′ can be rewritten as b(q−q′) = r′−r. Taking

absolute values of both sides and using the formula |xy| = |x| · |y|, we get

|b| · |q − q′| = |r′ − r|.
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Since r′ and r both lie in the half-open interval [0, |b|), the distance

between r′ and r must be less than |b| (the length of the interval), so

|r′ − r| < |b|. We proceed by splitting the argument into two cases.

Case 1: q 6= q′. Then |q − q′| > 0, so |q − q′| ≥ 1 and therefore, |r′ − r| =
|b| · |q− q′| ≥ |b| ·1 = |b|. This contradicts the earlier inequality |r′− r| < |b|.

Case 2: q = q′. Then from b(q − q′) = r′ − r we get that r′ = r. So the

pairs (q, r) and (q′, r′) are the same, which contradicts the initial hypothesis

that they are distinct.

�

3.4. Book references. The references for this lecture are as follows:

3.1 is covered in [Gilbert, 2.2] and [Pinter, Ch.21]

3.2 is covered in [Gilbert, 2.1] and [Pinter, Ch.21], but in both cases

the approach is slightly different

3.3 is covered in [Gilbert, 2.3] and [Pinter, Ch.21]. Both books give

a different proof of the division algorithm which does not use real

numbers.


